In this paper, a new parallel-coupled-line microstrip band pass filter (BPF) improving the harmonic suppression performance of the second harmonic signal (2 , twice the passband frequency) is described. It is found that the desired passband performance is improved and the harmonic passband signal is diminished by enforcing the consecutive patterns in coupled-line and increasing the number of grooves to the optimum values. The recalculation of design parameters such as space-gap between lines, line widths and lengths is not required due to the simple modification of the conventional filter by inserting periodic patterns. To evaluate the validity of this novel technique, order-3 Butterworth BPF centered at 2.5 GHz with a 10% fractional bandwidth (FBW) and order-5 Chebyshev BPF centered at 10 GHz with a 15% FBW were used. When five and three square grooves are used, over 30-dB suppression at second harmonic signal is achieved in simulation and experiment. Finally, the comparison between the characteristics of filters with square and semicircular periodic grooves has been carried out by using the simulated results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.