The influence of reciprocal position of the upper rotor blades in respect to the lower rotor blades is characteristic for coaxial main rotor. It is established that the initial azimuth of the blade, for example, of the upper rotor's which does not coincide with the initial azimuth of the lower rotor blades, affects the level of vibrations caused by the rotors thrust pulsations, the level of noise, generated mainly by coaxial rotor. This paper presents numerical studies which assess the effect of the initial azimuth of the upper rotor blades ("phasing") on the helicopter coaxial rotor thrust force pulsation. The research was carried out applying the calculation method based on the nonlinear vortex theory in a non-stationary formulation. The results of the helicopter coaxial rotor with different initial azimuths of the upper rotor blade relatively to the azimuth of the lower rotor blade flow around numerical simulation are presented. The influence of the blades "phasing" on the rotor thrust coefficient change and thrust force pulsation magnitude is shown. The flow of a six-bladed coaxial main rotor (two rotors with 3 blades) was simulated in the oblique flow mode at speeds of 51.25 m/s and 71.75 m/s at the rotor angles of attack-5 0 and -12 0 , respectively. The change in the coefficient of the main rotor thrust per revolution at different values of "phasing" was studied. The coaxial rotor thrust coefficient is determined by summing the lower and upper rotors thrust coefficients respectively. Thus, at some "phasing" the thrust coefficient of the lower and upper rotors increase intensifies the thrust pulsations, and at others, the peaks of the upper and lower rotors pulsations are displaced and the total coaxial rotor thrust coefficient changes per one revolution with smaller amplitude. It is established what "phasing" produce the maximum values of thrust pulsation, and at which-a minimum of thrust pulsation.
The article considers the problem of the flow around the helicopter main rotor taking into account blades flapping in the plane of rotation and in the plane of thrust as well as the elastic blades deformation. The rotor rotation is modeled by the method of converting Navier-Stokes equations from a fixed coordinate system associated with the incoming flow into a rotating system associated with the rotor hub. For axial flow problems, this makes it possible to formulate the problem as stationary at a constant rotational speed of rotor. For a mode of skewed flow around the rotor in the terms of incident flow in this system it is necessary to solve the non-stationary problem. To solve the problem, the method of deformable grids is used, in which the equations are copied taking into account the grid nodes motion determined in accordance with the spatial blades motion, and SST turbulence model is used for closure. The results of the test calculations of the main rotor aerodynamic characteristics with and without blade flapping are presented in this paper. The coefficients of the main rotor thrust cT and the blades hinge moments mh are compared. The calculations were carried out in the CFD software ANSYS CFX (TsAGI License No. 501024). The flow around a four-bladed main rotor of a radius of 2.5 meters is modeled in the regime of skewed flow. The speed of the incoming flow came to 85 m/s under normal atmospheric conditions. The rotor was at an angle of attack of −10˚. To calculate the rotor motion without taking into account the flapping movements, we used the nonstationary system of Navier-Stokes equations with the closure with SST turbulence model. The calculation was being carried out until the change in the maximum value of the rotor thrust during one revolution became less than 1%. For modeling flapping blade movements, the control laws and equations describing the angle of blade flapping as a function from its azimuth angle obtained from the experiment were used. The procedure for reconstructing the grid according to a given law was conducted using standard grid deformation methods presented in the ANSYS CFX software. When solving the nonstationary Navier-Stokes equations, a dual time step was used. The obtained results show that accounting of the effect of flapping movements and cyclic control of the blades has an impact on the character of changing the main rotor thrust coefficient during one revolution and significantly changes the shape of the graph of the hinge moment coefficient of each blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.