Forty years ago Burbidge, Burbidge, Fowler, and Hoyle combined what we would now call fragmentary evidence from nuclear physics, stellar evolution and the abundances of elements and isotopes in the solar system as well as a few stars into a synthesis of remarkable ingenuity. Their review provided a foundation for forty years of research in all of the aspects of low energy nuclear experiments and theory, stellar modeling over a wide range of mass and composition, and abundance studies of many hundreds of stars, many of which have shown distinct evidence of the processes suggested by B 2 FH. In this review we summarize progress in each of these fields with emphasis on the most recent developments. [S0034-6861(97)
Carbon-enhanced metal-poor (CEMP) stars in the Galactic Halo display enrichments in heavy elements associated with either the s (slow) or the r (rapid) neutron-capture process (e.g., barium and europium respectively), and in some cases they display evidence of both. The abundance patterns of these CEMP-s/r stars, which show both Ba and Eu enrichment, are particularly puzzling since the s and the r processes require neutron densities that are more than ten orders of magnitude apart, and hence are thought to occur in very different stellar sites with very different physical conditions. We investigate whether the abundance patterns of CEMP-s/r stars can arise from the nucleosynthesis of the intermediate neutron-capture process (the i process), which is characterised by neutron densities between those of the s and the r processes. Using nuclear network calculations, we study neutron capture nucleosynthesis at different constant neutron densities n ranging from 10 7 to 10 15 cm −3 . With respect to the classical s process resulting from neutron densities on the lowest side of this range, neutron densities on the highest side result in abundance patterns that show an increased production of heavy s-process and r-process elements but similar abundances of the light s-process elements.Such high values of n may occur in the thermal pulses of asymptotic giant branch (AGB) stars due to proton ingestion episodes. Comparison to the surface abundances of 20 CEMP-s/r stars show that our modelled i-process abundances successfully reproduce observed abundance patterns that could not be previously explained by s-process nucleosynthesis. Because the i-process models fit the abundances of CEMP-s/r stars so well, we propose that this class should be renamed as CEMP-i.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.