The paper presents a one step hybrid numerical scheme with two off grid points for solving directly the general second order initial value problems of ordinary differential equations. The scheme is developed using collocation and interpolation technique. The proposed scheme is consistent, zero stable and of order four. This scheme can estimate the approximate solution at both step and off step points simultaneously by using variable step size. Numerical results are given to show the efficiency of the proposed scheme over the existing schemes.
The behaviour of solutions for certain third-order nonlinear differential equations with multiple deviating arguments is considered. By employing Lyapunov's second method, a complete Lyapunov functional is constructed and used to establish sufficient conditions that guarantee existence of unique solutions that are periodic, uniformly asymptotically stable, and uniformly ultimately bounded. Obtained results not only are new but also include many outstanding results in the literature. Finally, the correctness and effectiveness of the results are justified with examples.
Abstract. In this paper, sufficient criteria for the existence of solutions to uniform asymptotic stability and boundedness problems associated with certain second order nonlinear non autonomous ordinary differential equation are established with the aid of Lyapunov's direct method. Furthermore, the appropriate complete Lyapunov function is given explicitly. Our results complement some well known results on the second order differential equations in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.