The experimentally observed inverse temperature dependence of the reverse gate leakage current in AlGaN/GaN HEMT is explained using a virtual gate trap-assisted tunneling model. The virtual gate is formed due to the capture of electrons by surface states in the vicinity of actual gate. The increase and decrease in the length of the virtual gate with temperature due to trap kinetics are used to explain this unusual effect. The simulation results have been validated experimentally.
Purpose -The present paper aims to propose a basic current mirror-sensing circuit as an alternative to the traditional Wheatstone bridge circuit for the design and development of high-sensitivity complementary metal oxide semiconductor (CMOS)-microelectromechanical systems (MEMS)-integrated pressure sensors. Design/methodology/approach -This paper investigates a novel current mirror-sensing-based CMOS-MEMS-integrated pressure-sensing structure based on the piezoresistive effect in metal oxide field effect transistor (MOSFET). A resistive loaded n-channel MOSFET-based current mirror pressure-sensing circuitry has been designed using 5-m CMOS technology. The pressure-sensing structure consists of three identical 10-m-long and 50-m-wide n-channel MOSFETs connected in current mirror configuration, with its input transistor as a reference MOSFET and output transistors are the pressure-sensing MOSFETs embedded at the centre and near the fixed edge of a silicon diaphragm measuring 100 ϫ 100 ϫ 2.5 m. This arrangement of MOSFETs enables the sensor to sense tensile and compressive stresses, developed in the diaphragm under externally applied pressure, with respect to the input reference transistor of the mirror circuit. An analytical model describing the complete behaviour of the integrated pressure sensor has been described. The simulation results of the pressure sensor show high pressure sensitivity and a good agreement with the theoretical model has been observed. A five mask level process flow for the fabrication of the current mirror-sensing-based pressure sensor has also been described. An n-channel MOSFET with aluminium gate was fabricated to verify the fabrication process and obtain its electrical characteristics using process and device simulation software. In addition, an aluminium gate metal-oxide semiconductor (MOS) capacitor was fabricated on a two-inch p-type silicon wafer and its CV characteristic curve was also measured experimentally. Finally, the paper presents a comparative study between the current mirror pressure-sensing circuit with the traditional Wheatstone bridge. Findings -The simulated sensitivities of the pressure-sensing MOSFETs of the current mirror-integrated pressure sensor have been found to be approximately 375 and 410 mV/MPa with respect to the reference transistor, and approximately 785 mV/MPa with respect to each other. The highest pressure sensitivities of a quarter, half and full Wheatstone bridge circuits were found to be approximately 183, 366 and 738 mV/MPa, respectively. These results clearly show that the current mirror pressure-sensing circuit is comparable and better than the traditional Wheatstone bridge circuits. Originality/value -The concept of using a basic current mirror circuit for sensing tensile and compressive stresses developed in micro-mechanical structures is new, fully compatible to standard CMOS processes and has a promising application in the development of miniaturized integrated micro-sensors and sensor arrays for automobile, medical and industrial application...
The nonlinear analysis of the metal–insulator semiconductor shows that the ac currents charging the interface traps lead to large dc operating voltage and an inefficient operation of the monolithic convolvers. These interface traps are annihilated during a low temperature anneal, which utilizes hydrogen atoms implanted underneath the SiO2–Si interface. The overlay piezoelectric ZnO film in the metal–ZnO–Si3N4–SiO2–Sistructure is protected from the influx of hydrogen atoms by an interposed silicon nitride layer. Hydrogen implantation and rapid thermal annealing steps are integrated in the process sequence of realizing an efficient metal–ZnO–Si3N4–SiO2–Si monolithic surface acoustic wave convolver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.