We studied behavioral pain-related reactions (PRRs) induced in mice by subcutaneous injections of 5% formalin within different phases of the fixed circadian illumination rhythm under conditions of administration of exogenous melatonin and of blocking of MT1 and MT2 melatonin receptors. It was demonstrated that modulation of experimentally induced somatic pain depends considerably on the phase of the preset circadian rhythm. In the norm, the duration of PRRs in the middle of the dark phase was 30% smaller than that in the middle of the light phase. Administration of exogenous melatonin in the middle of the light phase decreased the duration of episodes of noxious behavior by 43%, on average. Injections of melatonin within the dark phase resulted in no significant changes in the duration of PRRs. In the dark phase, the blockade of MT1 receptors by luzindole led to an increase in the duration of PRRs by 45%, as compared with the norm, while in the light phase we observed no significant alterations of this duration under conditions of blocking of the above-mentioned receptors. The blockade of MT2 receptors by prazocine in the middle of dark and light phases increased the durations of PRRs by 92 and 28%, respectively. Our data indicate that the analgesic effect of melatonin depends significantly on the level of this hormone in the organism; in turn, such a level is determined by the illumination conditions. The antinoxious effect of melatonin is mediated by MT receptors, in particular by MT2 receptors.
We studied emotional stress-induced modulations of the pain reaction evoked in mice of strains С57BL/6J and СВА/CaLac by subcutaneous injections of formalin; the measurements were performed at midtimes of a "dark" and a "light" phase of the pre-set fixed circadian rhythm. The magnitude of the pain reaction was estimated indirectly, according to characteristics of locomotion of the animal in a running wheel (the velocity of locomotion and the distance covered were considered values inversely correlating with the intensity of the pain response). We found that the intensity of the pain reaction within both phases of the circadian rhythm increased under the influence of stress, and that there were significant differences between the emotional stress-modulated intensities of the pain response observed in the examined genetic strains of mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.