Uncertainties in flood predictions complicate the planning of mitigation measures. There is a consensus that many possible incident scenarios should be considered. For each scenario, a specific response plan should be prepared which is optimal with respect to criteria such as protection, costs, or realization time. None of the existing software tools is capable of creating large scenario pools, nor do they provide means for quick exploration and assessment of the associated plans. In this paper, we present an integrated solution that is based on multidimensional, time‐dependent ensemble simulations of incident scenarios and protective measures. We provide scalable interfaces which facilitate and accelerate setting up multiple time‐varying parameters for generating a pool of pre‐cooked scenarios. In case of an emergency, disaster managers can quickly extract relevant information from the pool to deal with the situation at hand. An interactive 3D‐view conveys details about how a response plan has to be executed. Linked information visualization and ranking views allow for a quick assessment of many plans. In collaboration with flood managers, we demonstrate the practical applicability of our solution. We tackle the challenges of planning mobile water barriers for protecting important infrastructure. We account for real‐world limitations of available resources and handle the involved logistics problems.
In this paper, we introduce a simulation-based approach to design protection plans for flood events. Existing solutions require a lot of computation time for an exhaustive search, or demand for a time-consuming expert supervision and steering. We present a faster alternative based on the automated control of multiple parallel simulation runs. Run Watchers are dedicated system components authorized to monitor simulation runs, terminate them, and start new runs originating from existing ones according to domain-specific rules. This approach allows for a more efficient traversal of the search space and overall performance improvements due to a re-use of simulated states and early termination of failed runs. In the course of search, Run Watchers generate large and complex decision trees. We visualize the entire set of decisions made by Run Watchers using interactive, clustered timelines. In addition, we present visualizations to explain the resulting response plans. Run Watchers automatically generate storyboards to convey plan details and to justify the underlying decisions, including those which leave particular buildings unprotected. We evaluate our solution with domain experts.
In a variety of application areas, the use of simulation steering in decision making is limited at best. Research focusing on this problem suggests that most user interfaces are too complex for the end user. Our goal is to let users create and investigate multiple, alternative scenarios without the need for special simulation expertise. To simplify the specification of parameters, we move from a traditional manipulation of numbers to a sketch-based input approach. Users steer both numeric parameters and parameters with a spatial correspondence by sketching a change onto the rendering. Special visualizations provide immediate visual feedback on how the sketches are transformed into boundary conditions of the simulation models. Since uncertainty with respect to many intertwined parameters plays an important role in planning, we also allow the user to intuitively setup complete value ranges, which are then automatically transformed into ensemble simulations. The interface and the underlying system were developed in collaboration with experts in the field of flood management. The real-world data they have provided has allowed us to construct scenarios used to evaluate the system. These were presented to a variety of flood response personnel, and their feedback is discussed in detail in the paper. The interface was found to be intuitive and relevant, although a certain amount of training might be necessary.
Figure 1: Quantitative visualization of material movement for several flow components at once. (Left) Different materials in a logistics delivery process. (Middle) Uncertainty in water transportation for a storm water simulation ("at least", "expected", "worst case"). (Right) Flow map for crowd movement in an evacuation scenario, colored by the time of stay. AbstractFlow maps are widely used to provide an overview of geospatial transportation data. Existing solutions lack the support for the interactive exploration of multiple flow components at once. Flow components are given by different materials being transported, different flow directions, or by the need for comparing alternative scenarios. In this paper, we combine flows as individual ribbons in one composite flow map. The presented approach can handle an arbitrary number of sources and sinks. To avoid visual clutter, we simplify our flow maps based on a force-driven algorithm, accounting for restrictions with respect to application semantics. The goal is to preserve important characteristics of the geospatial context. This feature also enables us to highlight relevant spatial information on top of the flow map such as traffic conditions or accessibility. The flow map is computed on the basis of flows between zones. We describe a method for auto-deriving zones from geospatial data according to application requirements. We demonstrate the method in real-world applications, including transportation logistics, evacuation procedures, and water simulation. Our results are evaluated with experts from corresponding fields.
Figure 1: Understanding the uncertain vulnerability of a selected building to a multitude of flood scenarios. (Left) Vulnerability to floodwall overtopping events, displayed on a water gauge. (Middle) Vulnerability to floodwall breaches, shown along the protection wall. (Right) Adverse impact on the selected building, including cellar flooding. The probability of water reaching a particular level varies around the building and is mapped onto the facades. AbstractAs flood events tend to happen more frequently, there is a growing demand for understanding the vulnerability of infrastructure to flood-related hazards. Such demand exists both for flood management personnel and the general public. Modern software tools are capable of generating uncertainty-aware flood predictions. However, the information addressing individual objects is incomplete, scattered, and hard to extract. In this paper, we address vulnerability to flood-related hazards focusing on a specific building. Our approach is based on the automatic extraction of relevant information from a large collection of pre-simulated flooding events, called a scenario pool. From this pool, we generate uncertainty-aware visualizations conveying the vulnerability of the building of interest to different kinds of flooding events. On the one hand, we display the adverse effects of the disaster on a detailed level, ranging from damage inflicted on the building facades or cellars to the accessibility of the important infrastructure in the vicinity. On the other hand, we provide visual indications of the events to which the building of interest is vulnerable in particular. Our visual encodings are displayed in the context of urban 3D renderings to establish an intuitive relation between geospatial and abstract information. We combine all the visualizations in a lightweight interface that enables the user to study the impacts and vulnerabilities of interest and explore the scenarios of choice. We evaluate our solution with experts involved in flood management and public communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.