Abstract. We present STELIB , a new spectroscopic stellar library, available at http://webast.ast.obs-mip.fr/stelib. STELIB consists of an homogeneous library of 249 stellar spectra in the visible range (3200 to 9500 Å), with an intermediate spectral resolution ( < ∼ 3 Å) and sampling (1 Å). This library includes stars of various spectral types and luminosity classes, spanning a relatively wide range in metallicity. The spectral resolution, wavelength and spectral type coverage of this library represents a substantial improvement over previous libraries used in population synthesis models. The overall absolute photometric uncertainty is 3%.
We study the radial and longitudinal dependence of 4-13 and 27-37 MeV proton peak intensities and fluences measured within 1 AU of the Sun during intense solar energetic particle events. Data are from the IMP 8 and the two Helios spacecraft. We analyze 72 events and compute the total event fluence (F) and the peak intensity (J), distinguishing between the event's absolute maximum intensity and that neglecting local increases associated with the passage of shocks or plasma structures. Simultaneous measurements of individual events by at least two spacecraft show that the dominant parameter determining J and F is the longitudinal separation () between the parent active region and the footpoint of the field line connecting each spacecraft with the Sun, rather than the spacecraft radial distance (R). We perform a multiparameter fit to the radial and longitudinal distributions of J and F for events with identified solar origin and that produce intensity enhancements in at least two spacecraft. This fit determines simultaneously the radial and longitudinal dependences of J and F. Radial distributions of events observed by at least two spacecraft show ensembleaveraged variations ranging from R À2:7 to R À1:9 for 4-13 and 27-37 MeV proton peak intensities, and R À2:1 to R À1:0 for 4-13 and 27-37 MeV proton event fluences, respectively. Longitudinal distributions of J and F are approximated by the form e Àk À 0 ð Þ 2 , where 0 is the distribution centroid and k is found to vary between $1.3 and $1.0 rad À2. Radial dependences are less steep than both those deduced from diffusion transport models by Hamilton et al.
SEPServer is a three-year collaborative project funded by the seventh framework programme (FP7-SPACE) of the European Union. The objective of the project is to provide access to state-of-the-art observations and analysis tools for the scientific community on solar energetic particle (SEP) events and related electromagnetic (EM) emissions. The project will eventually lead to better understanding of the particle acceleration and transport processes at the Sun and in the inner heliosphere. These processes lead to SEP events that form one of the key elements of space weather. In this paper we present the first results from the systematic analysis work performed on the following datasets: SOHO/ERNE, SOHO/EPHIN, ACE/EPAM, Wind/WAVES and GOES X-rays. A catalogue of SEP events at 1 AU, with complete coverage over solar cycle 23, based on high-energy (~68-MeV) protons from SOHO/ERNE and electron recordings of the events by SOHO/EPHIN and ACE/EPAM are presented. A total of 115 energetic particle events have been identified and analysed using velocity dispersion analysis (VDA) for protons and time-shifting analysis (TSA) for electrons and protons in order to infer the SEP release times at the Sun. EM observations during the times of the SEP event onset have been gathered and compared to the release time estimates of particles. Data from those events that occurred during the European day-time, i.e., those that also have observations from ground-based observatories included in SEPServer, are listed and a preliminary analysis of their associations is presented. We find that VDA results for protons can be a useful tool for the analysis of proton release times, but if the derived proton path length is out of a range of 1 AU < s [ 3 AU, the result of the analysis may be compromised, as indicated by the anti-correlation of the derived path length and release time delay from the associated X-ray flare. The average path length derived from VDA is about 1.9 times the nominal length of the spiral magnetic field line. This implies that the path length of first-arriving MeV to deka-MeV protons is affected by interplanetary scattering. TSA of near-relativistic electrons results in a release time that shows significant scatter with respect to the EM emissions but with a trend of being delayed more with increasing distance between the flare and the nominal footpoint of the Earth-connected field line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.