Here we demonstrate for the first time the preparation of a triflic acid (TFA)-functionalized mesoporous nanocage with tunable pore diameters by the wet impregnation method. The obtained materials have been unambiguously characterized by XRD, N(2) adsorption, FTIR spectroscopy, and NH(3) temperature-programmed desorption (TPD). From the characterization results, it has been found that the TFA molecules are firmly anchored on the surface of the mesoporous supports without affecting their acidity. We also demonstrate the effect of the pore and cage diameter of the KIT-5 supports on the loading of TFA molecules inside the pore channels. It has been found that the total acidity of the materials increases with an increase in the TFA loading on the support, whereas the acidity of the materials decreases with an increase in the pore diameter of the support. The acidity of the TFA-functionalized mesoporous nanocages is much higher than that of the zeolites and metal-substituted mesoporous acidic catalysts. The TFA-functionalized materials have also been employed as the catalysts for the synthesis of 7-hydroxy-4-methylcoumarin by means of the Pechmann reaction under solvent-free conditions. It has been found that the catalytic activity of the TFA-functionalized KIT-5 is much higher than that of zeolites and metal-substituted mesoporous catalytic materials in the synthesis of coumarin derivatives. The stability of the catalyst is extremely good and can be reused several times without much loss of activity in the above reaction.
Alumina (Al 2 O 3) has been synthesized through combustion synthesis (CS) technique. The calcined products were characterized using X-ray diffractional analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA). TG-DTA results reveal the various stages involved in transition from γ-phase to α-Al 2 O 3 phase. The first phase γ-Al 2 O 3 was presented in the temperature range from 600˚C-875˚C as deduced from the XRD patterns with cubic crystal structure. The second stage occurs in the temperature range from 900˚C-1000˚C. In the final step, above 1000˚C, the aluminium oxide appears completely as α-Al 2 O 3 , showing high crystallinity. The particle sizes are closely related to γ-to α-Al 2 O 3 phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.