1. The partial purification of purine nucleoside phosphorylase from rabbit erythrocytes is described. 2. Analytical and preparative isoelectric focusing gave a pI value for the enzyme of 4.65. 3. Gel-chromatography and sucrose-density-gradient-centrifugation techniques gave estimates of the molecular weight in the range 75000-83000. 4. Lineweaver-Burk plots of kinetic data were non-linear at high inosine concentrations. Extrapolation of the linear part of such plots yielded a Km value for inosine of about 70 micrometer for the rabbit erythrocyte and liver enzymes. 5. A Hill interaction coefficient of 0.75 was obtained, suggesting negative co-operativity with respect to the binding of inosine. 6. Treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) caused partial inactivation, and subsequent Lineweaver-Burk plots with inosine as substrate displayed complete linearity, with an increase in Km value for inosine to 200 micrometer. 7. Starch-gel electrophoresis did not reveal the presence of secondary isoenzymes; all tissue extracts examined gave electrophoretic patterns similar to those obtained with the partially purified enzyme from erythrocytes. 8. Results of hybridization studies with nucleoside phosphorylase from human foetal liver suggest that the rabbit enzyme is also a trimer.
1. Qualitative studies on the stability of rabbit erythrocyte purine nucleoside phosphorylase showed a marked decrease in the susceptibility of the enzyme to thermal inactivation and digestion by proteinases of different specificities in response to certain of its substrates. 2. The extent to which inosine stabilizes the enzyme against thermal and proteolytic inactivation is related in a quantitative manner to the concentration of this substrate; it is proposed that differences in the rates of inactivation of the enzyme may reflect substrate-induced conformational changes in the enzyme structure that could alter the binding properties of the enzyme in a kinetically significant way. 3. A synergistic effect in the stabilization of the enzyme is observed in response to both substrates, inosine and phosphate, when the enzyme is inactivated with Pronase. 4. In the presence of substrate an increased rate of inactivation after reaction with 5,5'-dithiobis-(2-nitrobenzoic acid) is reported. 5. Differential-inactivation studies were also carried out with calf spleen purine nucleoside phosphorylase, and the results are discussed in relation to the kinetic properties displayed by this enzyme.
1. Concave-downward double-reciprocal plots were obtained for rabbit erythrocyte purine nucleoside phosphorylase when the concentration of Pi was varied over a wide range at a fixed saturating concentration of either inosine or deoxyinosine. Similar behaviour was also displayed by the calf spleen enzyme. 2. The degree of curvature of double-reciprocal plots was greatly modified by the presence of SO42-, introduced into the assay mixture with the linking enzyme xanthine oxidase; competitive inhibition by SO42- was observed over a narrow range of high Pi concentrations. 3. Partial inactivation with 5,5'-dithiobis-(2-nitrobenzoic acid) resulted in a marked alteration in the kinetic properties of the enzyme when Pi was the variable substrate. 4. Initial-velocity data are expressed in the form of Hill plots, and the significance of such plots is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.