On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.
We present a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs), that is complete in redshift. The sample is constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bright in the 15-150 keV Swift/BAT band, i.e. with 1-s peak photon fluxes in excess to 2.6 ph s −1 cm −2 . The sample is composed by 58 bursts, 52 of them with redshift for a completeness level of 90%, while another two have a redshift constraint, reaching a completeness level of 95%. For only three bursts we have no constraint on the redshift. The high level of redshift completeness allows us for the first time to constrain the GRB luminosity function and its evolution with cosmic times in a unbiased way. We find that strong evolution in luminosity (δ l = 2.3 ± 0.6) or in density (δ d = 1.7 ± 0.5) is required in order to account for the observations. The derived redshift distribution in the two scenarios are consistent with each other, in spite of their different intrinsic redshift distribution. This calls for other indicators to distinguish among different evolution models. Complete samples are at the base of any population studies. In future works we will use this unique sample of Swift bright GRBs to study the properties of the population of long GRBs.
With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and X-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Y e ≈ 0.27). Combined with the X-ray limits, we favor an observer viewing angle of ≈ 30• away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a gamma-ray burst afterglow). One-sentence summaryWe report X-ray and UV observations of the first binary neutron star merger detected via gravitational waves. Main TextAt 12:41:04.45 on 2017 August 17 (UT times are used throughout this work), the Laser Interferometric GravitationalWave Observatory (LIGO) and Virgo Consortium (LVC) registered a strong gravitational wave (GW) signal (LVC trigger G298048; (1)), later named GW 170817 (2). Unlike previous GW sources reported by LIGO, which involved only black holes (3), the gravitational strain waveforms indicated a merger of two neutron stars. Binary neutron star mergers have long been considered a promising candidate for the detection of an electromagnetic counterpart associated with a gravitational wave source. Two seconds later, the Gamma-Ray Burst Monitor (GBM) on the Fermi spacecraft triggered on a short (duration ≈ 2 s) gamma-ray signal consistent with the GW localization, GRB 170817A (4, 5). 330°00'00" 300°00'00" 270°00'00" 240°00'00" 210°00'00" 180°00'00" 150°00'00" 120°00'00" 90°00'00" 30°0°Figure 1: Skymap of Swift XRT observations, in equatorial (J2000) coordinates. The grey probability area is the GW localization (13), the blue region shows the Fermi-GBM localization, and the red circles are Swift-XRT fields of view. UVOT fields are colocated with a field of view 60% of the XRT. The location of the counterpart, EM 170817, is marked with a large yellow cross. The early 37-point mosaic can be seen, centred on the GBM probability. The widely scattered points are from the first uploaded observing plan, which was based on the singledetector GW skymap. The final observed plan was based on the first 3-detector map (11), however we show here the higher-quality map (13) so that our coverage can be compared to the final probability map (which was not available at the time of our planning; (7)).Swift satellite (6) in its low-Earth orbit meant that the GW and gamma-ray burst (GRB) localizations were occulted by the Earth (7) and so not visible to its Burst Alert Telescope (BAT). These discoveries triggered a world-wide effort to find, localize and characterize the EM counterpart (8). We present UV and X-ray observations conducted as part of t...
We present a detailed analysis of Swift multi-wavelength observations of GRB 070110 and its remarkable afterglow. The early X-ray light curve, interpreted as the tail of the prompt emission, displays a spectral evolution already seen in other gamma-ray bursts. The optical afterglow shows a shallow decay up to ∼2 d after the burst, which is not consistent with standard afterglow models. The most intriguing feature is a very steep decay in the X-ray flux at ∼2×10 4 s after the burst, ending an apparent plateau. The abrupt drop of the X-ray light curve rules out an external shock as the origin of the plateau in this burst and implies long-lasting activity of the central engine. The temporal and spectral properties of the plateau phase point towards a continuous central engine emission rather than the episodic emission of X-ray flares. We suggest that the observed X-ray plateau is powered by a spinning down central engine, possibly a millisecond pulsar, which dissipates energy at an internal radius before depositing energy into the external shock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.