We report the discovery of transient radio emission from the nearby optically discovered tidal disruption event (TDE) ASASSN-14li (distance of 90 Mpc), making it the first typical TDE detected in the radio, and unambiguously pointing to the formation of a non-relativistic outflow with a kinetic energy of ≈(4-10)×10 47 erg, a velocity of ≈12,000-36,000 km s −1 , and a mass of ≈3×10 −5 -7 × 10 −4 M e . We show that the outflow was ejected on 2014 August 11-25, in agreement with an independent estimate of the timing of super-Eddington accretion based on the optical, ultraviolet, and X-ray observations, and that the ejected mass corresponds to about 1%-10% of the mass accreted in the super-Eddington phase. The temporal evolution of the radio emission also uncovers the circumnuclear density profile, R R 2.5 ( ) r µ -on a scale of about 0.01 pc, a scale that cannot be probed via direct measurements even in the nearest supermassive black holes. Our discovery of radio emission from the nearest well-studied TDE to date, with a radio luminosity lower than all previous limits, indicates that nonrelativistic outflows are ubiquitous in TDEs, and that future, more sensitive, radio surveys will uncover similar events.