We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SN Ia (0.03 < z < 0.68) with useful distance estimates of SN Ia from SDSS, SNLS, various low-z and HST samples to form the largest combined sample of SN Ia consisting of a total of 1048 SN Ia ranging from 0.01 < z < 2.3, which we call the 'Pantheon Sample'. When combining Planck 2015 CMB measurements with the Pantheon SN sample, we find Ω m = 0.307±0.012 and w = −1.026±0.041 for the wCDM model. When the SN and CMB constraints are combined with constraints from BAO and local H 0 measurements, the analysis yields the most precise measurement of dark energy to date: w 0 = −1.007 ± 0.089 and w a = −0.222 ± 0.407 for the w 0 w a CDM model. Tension with a cosmological constant previously seen in an analysis of PS1 and low-z SNe has diminished after an increase of 2× in the statistics of the PS1 sample, improved calibration and photometry, and stricter light-curve quality cuts. We find the systematic uncertainties in our measurements of dark energy are almost as large as the statistical uncertainties, primarily due to limitations of modeling the low-redshift sample. This must be addressed for future progress in using SN Ia to measure dark energy.
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Gamma-ray bursts (GRBs) are the most brilliant objects in the Universe but efforts to estimate the total energy released in the explosion -- a crucial physical quantity -- have been stymied by their unknown geometry: spheres or cones. We report on a comprehensive analysis of GRB afterglows and derive their conical opening angles. We find that the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5x10**50 erg. We draw three conclusions. First, the central engines of GRBs release energies that are comparable to ordinary supernovae, suggesting a connection. Second, the wide variation in fluence and luminosity of GRBs is due entirely to a distribution of opening angles. Third, only a small fraction of GRBs are visible to a given observer and the true GRB rate is at least a factor of 500 times larger than the observed rate.Comment: Nature, submitte
We present a comprehensive catalog and analysis of broad-band afterglow observations for 103 short-duration gamma-ray bursts (GRBs), comprised of all short GRBs from November 2004 to March 2015 with prompt follow-up observations in the X-ray, optical, near-infrared and/or radio bands. These afterglow observations have uncovered 71 X-ray detections, 30 optical/NIR detections, and 4 radio detections. Employing the standard afterglow synchrotron model, we perform joint probability analyses for a subset of 38 short GRBs with wellsampled light curves to infer the burst isotropic-equivalent energies and circumburst densities. For this subset, we find median isotropic-equivalent γ-ray and kinetic energies of E γ,iso ≈ 2 × 10 51 erg, and E K,iso ≈ (1 − 3) × 10 51 erg, respectively, depending on the values of the model input parameters. We further find that short GRBs occur in low-density environments, with a median density of n ≈ (3 − 15) × 10 −3 cm −3 , and that ≈ 80 − 95% of bursts have densities of n 1 cm −3 . We investigate trends between the circumburst densities and host galaxy properties, and find that events located at large projected offsets of 10 effective radii from their hosts exhibit particularly low densities of n 10 −4 cm −3 , consistent with an IGM-like environment. Using late-time afterglow data for 11 events, we find a median jet opening angle of θ j = 16 ± 10 • . We also calculate a median beaming factor of f b ≈ 0.04, leading to a beaming-corrected total energy release of E true ≈ 1.6 × 10 50 erg. Furthermore, we calculate a beaming-corrected event rate of ℜ true = 270 +1580 −180 Gpc −3 yr −1 , or ≈ 8 +47 −5 yr −1 within a 200 Mpc volume, the Advanced LIGO/Virgo typical detection distance for NS-NS binaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.