Purpose: To study myocardial perfusion reserve and myocellular metabolic alterations indicated by triglyceride content as possible causes of diastolic dysfunction in patients with type 2 diabetes mellitus, preserved systolic function, and without clinically evident coronary artery disease.
Materials and Methods:Patients with type 2 diabetes mellitus (n ¼ 42) underwent cardiac magnetic resonance (CMR) for quantification of 1) myocardial contractility by strain-encoded MR (SENC); 2) myocardial triglyceride content by proton magnetic resonance spectroscopy ( 1 H-MRS); and 3) myocardial perfusion reserve during pharmacologic hyperemia. Age-matched healthy volunteers (n ¼ 16) also underwent CMR to acquire normal values for myocardial strain and perfusion reserve.Results: Stress CMR procedures were successfully performed in all subjects, and no regional inducible perfusion defects were observed in type 2 diabetes mellitus patients. Diastolic strain rate and myocardial perfusion reserve were significantly impaired in patients with type 2 diabetes mellitus compared to control subjects (P < 0.001 for both). Interestingly, impaired diastolic function in type 2 diabetes mellitus was not associated with impaired myocardial perfusion reserve (r ¼ 0.12, P ¼ NS). Conversely a significant association was observed between diastolic dysfunction and myocardial triglyceride content (r ¼ À0.71, P < 0.001), which proved to be independent of age, gender, diabetes duration, blood pressure, and fasting blood glucose.
Conclusion:Myocardial steatosis may represent an early marker of diabetic heart disease, triggering subclinical myocardial dysfunction irrespective of myocardial perfusion reserve.
The classification of DD with PC-CMR is feasible and shows good agreement with the widely accepted EC classification of DD. We present a practical approach for the clinically important assessment of DD with PC-CMR, circumventing sophisticated and time-consuming CMR sequences and specially designed software analysis tools.
This study was performed to assess the role of additional myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance (DSMR-wall motion) for the evaluation of patients with intermediate (50-70%) coronary artery stenosis. Routine DSMR-wall motion was combined with perfusion imaging (DSMR-perfusion) in 174 consecutive patients with chest pain syndromes who were scheduled for a clinically indicated coronary angiography. When defining CAD as the presence of a ≥ 50% stenosis, the addition of perfusion imaging improved sensitivity (90 vs. 79%, P < 0.001) with a non-significant reduction in specificity (85 vs. 90%, P = 0.13) and an improvement in overall diagnostic accuracy (88 vs. 84%, P = 0.008). Adding perfusion imaging improved sensitivity in patients with intermediate stenosis (87 vs. 72%, P = 0.03), but not in patients with severe (≥70%) stenosis (93 vs. 84%, P = 0.06). In patients with severe stenosis specificity of DSMR-perfusion versus DSMR-wall motion decreased (61 vs 70%, P = 0.001) resulting in a lower overall accuracy (71 vs 74%, P = 0.03). Using a cutoff of ≥50% for the definition of CAD, sensitivity of DSMR-perfusion compared to DSMR-wall motion was significantly higher in patients with single vessel (88 vs. 77%, P = 0.03) and multi vessel disease (93 vs. 79%, P = 0.03), whereas no significant differences were found using a cutoff of ≥70% stenosis for the definition of CAD. The addition of perfusion imaging during DSMR-wall motion improved the sensitivity in patients with intermediate coronary artery stenosis. Overall diagnostic accuracy increased only when defining CAD as ≥50% stenosis. In patients with ≥70% stenosis DSMR-wall motion alone had higher accuracy due to more false-positive cases with DSMR-perfusion.
Magnetic resonance coronary angiography (MRCA) has been proven to be feasible for imaging of the proximal and medial portions of the three main coronary arteries. Free breathing techniques allow for high resolution imaging but prolong scan time. This could potentially be shortened by improving the efficiency, robustness and accuracy of the navigator gating algorithm. Aim of this study was to determine the feasibility, efficiency, and image quality of a new motion compensation algorithm (3D-MAG) for coronary artery imaging with navigator techniques. In 21 patients the coronaries were imaged in plane with a 3D k-space segmented gradient echo sequence. A T2 preparation prepulse was used for suppression of myocardial signal, during free breathing and a navigator technique with using real time slice following and a gating window of 5 mm was applied to suppress breathing motion artefacts. Imaging was performed with standard gating and compared to 3D-MAG. Image quality was visually compared, contrast-to-noise and signal-to-noise ratio were calculated, the length of visualized coronary arteries was measured and scan duration and scan efficiency were calculated. Standard navigator imaging was feasible in 19 of 21 (90.5%) patients 3D-MAG in 21/21 (100%). Scan efficiency and duration was significantly improved with 3D-MAG (p < .05) without change in image quality. 3D-MAG is superior to conventional navigator correction algorithms. It improves feasibility and scan efficiency without reduction of image quality. This approach should be routinely used for MR coronary artery imaging with navigator techniques.
In healthy myocardial segments, the myocardial upslope is mainly determined from the LV upslope. Both myocardial enhancement and upslope are largely independent from the injection rate of a contrast agent bolus as long as the injection speed is not below 3 ml/s. Myocardial enhancement, however, is dose dependent. Thus, a simple correction for LV upslope allows to normalize a wide variety of input parameters. Differences of myocardial upslope or peak signal intensity after correction should be mainly dependent on blood flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.