Laser-Doppler measurements of velocity distribution and reattachment length are reported downstream of a single backward-facing step mounted in a two-dimensional channel. Results are presented for laminar, transitional and turbulent flow of air in a Reynolds-number range of 70 < Re < 8000. The experimental results show that the various flow regimes are characterized by typical variations of the separation length with Reynolds number. The reported laser-Doppler measurements do not only yield the expected primary zone of recirculating flow attached to the backward-facing step but also show additional regions of flow separation downstream of the step and on both sides of the channel test section. These additional separation regions have not been previously reported in the literature.Although the high aspect ratio of the test section (1:36) ensured that the oncoming flow was fully developed and two-dimensional, the experiments showed that the flow downstream of the step only remained two-dimensional at low and high Reynolds numbers.The present study also included numerical predictions of backward-facing step flow. The two-dimensional steady differential equations for conservation of mass and momentum were solved. Results are reported and are compared with experiments for those Reynolds numbers for which the flow maintained its two-dimensionality in the experiments. Under these circumstances, good agreement between experimental and numerical results is obtained.
The present paper describes predictions of film cooling by a row of holes. The calculations have been performed by a two-dimensional boundary-layer code with special modifications that account for the basically three-dimensional, elliptic nature of the flow after injection. The elliptic reverse-flow region near the injection is leapt over and new boundary-layer profiles are set up after the blowing region. They take into account the oncoming boundary layer as well as the characteristics of the injected jets. The three dimensionality of the flow, which is very strong near the injection and decreases further downstream, is modeled by so-called dispersion terms, which are added to the two-dimensional boundary-layer equations. These terms describe additional mixing by the laterally nonuniform flow. Information on the modeling of the profiles after injection and of the dispersion terms has been extracted from three-dimensional fully elliptic calculations for specific flow configurations. The modified two-dimensional boundary-layer equations are solved by a forward-marching finite-volume method. A coordinate system is used that stretches with the growth of the boundary layer. The turbulent stresses and heat fluxes are obtained from the k-ε turbulence model. Results are given for flows over flat plates as well as for flows over gas turbine blades for different injection angles, relative spacings, blowing rates, and injection temperatures. The predicted cooling effectiveness and heat transfer coefficients are compared with experimental data and show generally fairly good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.