<span>This paper proposes the fundamental aspects of hybrid nonlinear control which is composed of the super twisting algorithm (STA) based second order sliding mode control applying fuzzy logic method (FSOSMC), with pertinent simulation results for a doubly fed induction machine (DFIM) drive. To minimize chattering effect phenomenon due to Signum function employed in sliding mode algorithm, a new method is proposed. This technique consists in replacing the signum function by fuzzy switching function in the SOSMC to minimize flux and torque ripples. This FSOSMC is associated to the double direct torque control DDTC of the doubly fed induction machine (DFIM) by combining the advantages of fuzzy logic (FL) and the advantages of super-twisting sliding mode. The FSOSMC-DDTC strategy is compared with a PI-DDTC and SOSMC-DDTC. Simulation results demonstrate good efficiency and excellent robustness of the hybrid nonlinear controller.</span>
Brushless doubly fed induction (BDFIG) is one of the best solutions of the previous research efforts about wind-power converter, which is represented by the absence of a brush gear and less maintenance cost, especially in the harsh regions. This task presents a comparative evaluation between a sliding mode and Fuzzy control. It demonstrates also the robustness of these two regulators against supply voltage and load disturbances. Furthermore, we have shown the undesirable phenomenon of oscillations having a finite frequency and amplitude, which is known as ‘chattering’ resulted from a sliding mode control which is based on Lyapunov approach theorem. The control of the system and BDFIG are both integrated in variable speed wind energy conversion. The performances of these control systems have been tested and analyzed in Matlab Simulink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.