The problem of web document clustering has been well studied. Web documents has been grouped based various features like textual, topical and semantic features. Number of approaches has been discussed earlier for the clustering of web documents. However the method does not produce promising results towards web document clustering. To overcome this, an efficient hierarchical semantic relational coverage based approach is presented in this paper. The method extracts the features of web document by preprocessing the document. The features extracted have been used to measure the semantic relational coverage measure in different levels. As the documents are grouped in a hierarchical manner, the method estimates the relational coverage measure in each level of the cluster. Based on the semantic relational measure at different level, the method estimates the topical semantic support measure. Using these two, the method computes the class weight. The estimated class weight has been used to perform document clustering. The proposed method improves the performance of document clustering and reduces the false classification ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.