Imperative utilization of biosensors has acquired paramount importance in the field of drug discovery, biomedicine, food safety standards, defense, security, and environmental monitoring. This has led to the invention of precise and powerful analytical tools using biological sensing element as biosensor. Glucometers utilizing the strategy of electrochemical detection of oxygen or hydrogen peroxide using immobilized glucose oxidase electrode seeded the discovery of biosensors. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitive limit of biosensors. Use of aptamers or nucleotides, affibodies, peptide arrays, and molecule imprinted polymers provide tools to develop innovative biosensors over classical methods. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. Various biosensors ranging from nanomaterials, polymers to microbes have wider potential applications. It is quite important to integrate multifaceted approaches to design biosensors that have the potential for diverse usage. In light of this, this review provides an overview of different types of biosensors being used ranging from electrochemical, fluorescence tagged, nanomaterials, silica or quartz, and microbes for various biomedical and environmental applications with future outlook of biosensor technology.
Specific and sensitive radioimmunoassays (RIAs) were newly developed for two types of gonadotropin-releasing hormone (GnRH), namely, seabream (sb) GnRH and chicken (c) GnRH-II. We employed these two RIAs together with a previously reported RIA for salmon (s) GnRH to study the presence and regional distribution of these three GnRHs in the brains and pituitaries of four perciform fishes (red seabream, Pagrus major; black seabream, Acanthopagrus schlegeli; striped knifejaw, Oplegnathus fasciatus; and Nile tilapia, Oreochromis niloticus), as well as clarify seasonal changes in levels of these GnRHs in the brain and pituitary of red seabream. All three GnRHs were found in brains of all fishes examined, with regional distributions in the brains of the three GnRHs being rather similar. sbGnRH was abundant in telencephalon and hypothalamus. cGnRH-II was concentrated from the middle to posterior part of the brain and distributed throughout the brain. sGnRH was concentrated in the olfactory bulb and distributed all over the brain, as was cGnRH-II. The dominant form of GnRH in the pituitary was sbGnRH, with levels 500- to 2400-fold higher than those of sGnRH, while cGnRH-II was undetectable in all four species. In the brain and pituitary of female red seabream, levels of both brain and pituitary sbGnRH increased from October (immature phase) and reached a peak in April (spawning phase), reflecting the increase in gonadosomatic index and vitellogenesis. However, levels of sbGnRH remained high only in the pituitary of completely regressed fish in June. Levels of both sGnRH and cGnRH-II in the brain were higher in the regressed phase and remained lower during the spawning phase. From these and previous results, it appears that sbGnRH is physiologically the most important form of GnRH in reproduction in red seabream and, probably, in other perciforms also.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat braincerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex.
Two distinct gonadotropins (GTHs) have been demonstrated in a number of teleost fishes. Although the physiological roles of GTHs have been extensively studied in salmonids, little is known about their biological functions in nonsalmonid fishes. In this study, to elucidate the role of GTH-I and GTH-II in reproduction, we cloned the alpha-glycoprotein subunit (alphaGSU) and gonadotropin beta subunits (Ibeta and IIbeta) of red seabream using the 5'- and 3'-RACE methods and used these cDNA probes to reveal changes in mRNA levels of each subunit during sexual maturation of both male and female red seabream. The nucleotide sequences of alphaGSU, Ibeta, and IIbeta are 629, 531, and 557 base pairs long, encoding peptides of 117, 120, and 146 amino acids, respectively. The deduced amino acid sequence of each mature subunit showed high homology with those of other teleosts. Northern blot analysis showed that Ibeta mRNA levels of males increase in association with gonadal development, whereas those of females remain low throughout sexual maturation, indicating sexual dimorphism in the expression pattern of Ibeta. In contrast, IIbeta mRNA levels of both sexes are maintained at high levels from the beginning of gametogenesis to spawning season. These results are different than those of salmonids and suggest that GTH-I may have important roles in male, but not female, gametogenesis. GTH-II may be involved in regulation of early and late gametogenesis in both male and female red seabream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.