Abstract-Recently, a novel evolutionary global search strategy called Imperialist Competitive Algorithm (ICA) has proven its superior capabilities in optimization problems. This paper presents an application of ICA in automated clustering of remote sensing images. The proposed algorithm is basically a hierarchical two-phase process. At the first phase the original data set is decomposed into water bodies and land cover classes using near Infrared band's information. At the second phase, ICA has been applied to determine the number and centers of the land cover clusters using RGB band's information during an unsupervised clustering. The optimization is based on Fuzzy C-Means and an additional term for improving the accuracy of clustering. The method is applied on pan-sharpened IKONOS images of Tehran and 4 artificial data sets with different properties. Results obtained from applying the proposed method for both artificial data sets and RS image, indicate promising ability of this method in clustering data with unknown cluster number. Also the results show that the achieved overall accuracy can be available, better than 78% in comparison with other applied methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.