[1] Measurements from the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on board the ENVISAT satellite have been analyzed for tropospheric NO 2 signatures of shipping emissions. Clear indication for NO 2 produced from ship emissions has been found over the Red Sea and along the main shipping lane to the southern tip of India, to Indonesia and north towards China and Japan where the signal is lost. Using simple assumptions for the NO x loss, emission strengths were estimated and compared to an updated ship emission inventory. Good agreement was found in the spatial distribution and the absolute values for the Red Sea agree within a factor of 2, but larger discrepancies exist in other areas. Although the fluxes calculated still have large uncertainties, the results highlight the importance of ship emissions for the marine boundary layer and at the same time demonstrate the potential of satellite observations.
Under the Paris Agreement progress of emission reduction efforts is tracked on the basis of regular updates to national Greenhouse Gas (GHG) inventories, referred to as bottom-up estimates. However, only top-down atmospheric measurements can provide observation-based evidence of emission trends. Today there is no internationally agreed, operational capacity to monitor anthropogenic GHG emission trends using atmospheric measurements to complement national bottom-up inventories. The European Commission (EC), the European Space Agency, the European Centre for Medium-Range Weather Forecasts, the European Organisation for the Exploitation of Meteorological Satellites and international experts, are joining forces to develop such an operational capacity for monitoring anthropogenic CO2 emissions as a new CO2 service under EC's Copernicus Programme. Design studies have been used to translate identified needs into defined requirements and functionalities of this anthropogenic CO2 emissions Monitoring and Verification Support (CO2MVS) capacity. It adopts a holistic view and includes components such as atmospheric space-borne and in-situ measurements, bottom-up CO2 emission maps, improved modeling of the carbon cycle, an operational data-assimilation system integrating top-down and bottom-up information, and a policy-relevant decision support tool. The CO2MVS capacity with operational capabilities by 2026, is expected to visualize regular updates of global CO2 emissions, likely at 0.05°x0.05°. This will complement the PA’s enhanced transparency framework, providing actionable information on anthropogenic CO2 emissions that are the main driver of climate change. This information will be available to all stakeholders, including governments and citizens, allowing them to reflect on trends and effectiveness of reduction measures. The new EC gave green light to pass the CO2MVS from exploratory to implementing phase.
[1] Volcanic eruptions are known to be a major source of SO 2 and some reactive halogen species notably HCl and HF. Recent studies have however observed the presence of large amounts of BrO with tight correlation to SO 2 in a volcanic plume by ground-based spectroscopic measurements. In this work, upper limits of BrO columns have been estimated for a number of volcanic eruptions observed in measurements made by two satellite instruments -the Global Ozone Monitoring Experiment (GOME), and the new SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY). The results obtained for the eruptions covered by satellite overpasses over the Etna, Nyamuragira, Popocatépetl, and Reventador volcanoes show no correlation between enhanced volcanic SO 2 during large eruptions and the corresponding BrO columns. Evidence for BrO enhancement was also not found in the vicinity of the Soufrière Hills volcanoes. The possible reasons for the differences between ground-based and satellite observations are considered.
Abstract. Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY) using Differential Optical Absorption Spectroscopy (DOAS) are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm). The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS) in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.
Responding to plans of the European Commission for extending the observation capabilities of the Copernicus programme, the European Space Agency (ESA) has initiated Phase A industrial (technical feasibility) studies for several new space-borne Earth Observation missions. High priority is given to a constellation of LEO satellites in Sunsynchronous orbit with the purpose of observing anthropogenic carbon dioxide (CO2) emissions [European Commission, 2017]. The observing system shall acquire images of CO2 concentration in terms of dry air column-averaged mole fractions (XCO2), providing complete global land coverage at high spatial resolution (4 km 2 ) within five days. The demanding requirements call for a payload comprising a combination of multiple instruments, which perform simultaneous measurements. The XCO2 is inferred from reflectance measurements in the Near-Infrared (NIR) and Short-Wave Infrared spectral regions (SWIR). This requires at least three spatially co-registered push-broom imaging spectrometers, measuring spectral radiance and solar irradiance in the NIR (747-773 nm), SWIR-1 (1595-1675 nm) and SWIR-2 (1990SWIR-2 ( -2095 at moderate spectral resolving power (R~5000-7000). In addition, the observations for CO2 concentration will be complemented by Differential Optical Absorption Spectroscopy (DOAS) measurements of nitrogen dioxide (NO2) over the same area. The NO2 measurements in the visible region (400-500 nm) are expected to serve as a tracer for plumes of high CO2 concentration resulting from high temperature combustion, which will facilitate plume identification and mapping. The third component of the payload is a multiple-angle polarimeter (MAP), performing high-precision measurements of aerosol (and cloud) properties. Its measurements of polarized radiance under various observation angles are expected to reduce XCO2 bias error and significantly increase the yield of useful retrievals from the NIR and SWIR spectra. The complex observation architecture, involving multiple instruments and platforms, call for optimized observational requirements, driven by the primary goal of detecting and quantifying point-sources of greenhouse gas emissions. In particular, high single-sounding precision is essential for identifying plumes of elevated CO2 concentration from instantaneous image acquisitions without regional and temporal averaging. This translates into stringent requirements for Signal-to-noise ratio (SNR), as well as spatial co-registration and spectral stability, which drive the instrument design. The presentation will introduce the different elements of the candidate Copernicus mission, in view of the ambitious mission goals. The payload components and observation requirements are addressed with special emphasis on the derivation of the SNR and spectral resolution requirements, which determine the instrument sizing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.