Alzheimer's disease (AD) is the most common cause of progressive intellectual failure in aged humans. AD brains contain numerous amyloid plaques surrounded by dystrophic neurites, and show profound synaptic loss, neurofibrillary tangle formation and gliosis. The amyloid plaques are composed of amyloid beta-peptide (A beta), a 40-42-amino-acid fragment of the beta-amyloid precursor protein (APP). A primary pathogenic role for APP/A beta is suggested by missense mutations in APP that are tightly linked to autosomal dominant forms of AD. A major obstacle to elucidating and treating AD has been the lack of an animal model. Animals transgenic for APP have previously failed to show extensive AD-type neuropathology, but we now report the production of transgenic mice that express high levels of human mutant APP (with valine at residue 717 substituted by phenylalanine) and which progressively develop many of the pathological hallmarks of AD, including numerous extracellular thioflavin S-positive A beta deposits, neuritic plaques, synaptic loss, astrocytosis and microgliosis. These mice support a primary role for APP/A beta in the genesis of AD and could provide a preclinical model for testing therapeutic drugs.
Small RNAs ranging in size between 20 and 30 nucleotides are involved in different types of regulation of gene expression including mRNA degradation, translational repression, and chromatin modification. Here we describe the small RNA profile of Drosophila melanogaster as a function of development. We have cloned and sequenced over 4000 small RNAs, 560 of which have the characteristics of RNase III cleavage products. A nonredundant set of 62 miRNAs was identified. We also isolated 178 repeat-associated small interfering RNAs (rasiRNAs), which are cognate to transposable elements, satellite and microsatellite DNA, and Suppressor of Stellate repeats, suggesting that small RNAs participate in defining chromatin structure. rasiRNAs are most abundant in testes and early embryos, where regulation of transposon activity is critical and dramatic changes in heterochromatin structure occur.
An efficient catalytic process for converting methane into methanol could have far-reaching economic implications. Iron-containing zeolites (microporous aluminosilicate minerals) are noteworthy in this regard, having an outstanding ability to hydroxylate methane rapidly at room temperature to form methanol. Reactivity occurs at an extra-lattice active site called α-Fe(ii), which is activated by nitrous oxide to form the reactive intermediate α-O; however, despite nearly three decades of research, the nature of the active site and the factors determining its exceptional reactivity are unclear. The main difficulty is that the reactive species-α-Fe(ii) and α-O-are challenging to probe spectroscopically: data from bulk techniques such as X-ray absorption spectroscopy and magnetic susceptibility are complicated by contributions from inactive 'spectator' iron. Here we show that a site-selective spectroscopic method regularly used in bioinorganic chemistry can overcome this problem. Magnetic circular dichroism reveals α-Fe(ii) to be a mononuclear, high-spin, square planar Fe(ii) site, while the reactive intermediate, α-O, is a mononuclear, high-spin Fe(iv)=O species, whose exceptional reactivity derives from a constrained coordination geometry enforced by the zeolite lattice. These findings illustrate the value of our approach to exploring active sites in heterogeneous systems. The results also suggest that using matrix constraints to activate metal sites for function-producing what is known in the context of metalloenzymes as an 'entatic' state-might be a useful way to tune the activity of heterogeneous catalysts.
Two distinct [Cu-O-Cu](2+) sites with methane monooxygenase activity are identified in the zeolite Cu-MOR, emphasizing that this Cu-O-Cu active site geometry, having a ∠Cu-O-Cu ∼140°, is particularly formed and stabilized in zeolite topologies. Whereas in ZSM-5 a similar [Cu-O-Cu](2+) active site is located in the intersection of the two 10 membered rings, Cu-MOR provides two distinct local structures, situated in the 8 membered ring windows of the side pockets. Despite their structural similarity, as ascertained by electronic absorption and resonance Raman spectroscopy, the two Cu-O-Cu active sites in Cu-MOR clearly show different kinetic behaviors in selective methane oxidation. This difference in reactivity is too large to be ascribed to subtle differences in the ground states of the Cu-O-Cu sites, indicating the zeolite lattice tunes their reactivity through second-sphere effects. The MOR lattice is therefore functionally analogous to the active site pocket of a metalloenzyme, demonstrating that both the active site and its framework environment contribute to and direct reactivity in transition metal ion-zeolites.
Metal-exchanged zeolites are a class of heterogeneous catalysts that perform important functions ranging from selective hydrocarbon oxidation to remediation of NO pollutants. Among these, copper and iron zeolites are remarkably reactive, hydroxylating methane and benzene selectively at low temperature to form methanol and phenol, respectively. In these systems, reactivity occurs at well-defined molecular transition metal active sites, and in this review we discuss recent advances in the spectroscopic characterization of these active sites and their reactive intermediates. Site-selective spectroscopy continues to play a key role, making it possible to focus on active sites that exist within a distribution of inactive spectator metal centers. The definition of the geometric and electronic structures of metallozeolites has advanced to the level of bioinorganic chemistry, enabling direct comparison of metallozeolite active sites to functionally analogous Fe and Cu sites in biology. We identify significant parallels and differences in the strategies used by each to achieve high reactivity, highlighting potentially interesting mechanisms to tune the performance of synthetic catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.