In the machine learning field, the technique known as ensemble learning aims at combining different base learners in order to increase the quality and the robustness of the predictions. Indeed, this approach has widely been applied to tackle, with success, real world problems from different domains, including computational biology. Nevertheless, despite their potential, ensembles combining results from different base learners have been understudied in the context of gene regulatory network inference. In this paper we applied genetic algorithms and frequent itemset mining, to design small but effective ensembles of gene regulatory network inference methods. These ensembles were evaluated and compared to well-established single and ensemble methods, on both real and synthetic datasets. Results showed that small ensembles, consisting of few but diverse base learners, enhance the exploration of the solution space, and compensate base learners biases, outperforming state-of-the-art methods. Results advocate for the use of such methods as gene regulatory network inference tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.