Sampling plans in which items that are put to test, to collect the life of the items in order to decide upon accepting or rejecting a submitted lot, are called reliability test plans. The basic probability model of the life of the product is specified as the well known half logistic distribution. For a given producer's risk, sample size, termination number and waiting time to terminate the test plans are compute. The preferability of the test plan over similar plans existing in the literature is established with respect to cost and time of the experiment.
White Blood Cells are essential in keeping track of a person's health. However, the pathologist's experience will determine how the blood smear is evaluated. Furthermore, it is still challenging to classify WBCs accurately because they have various forms, sizes, and colors due to distinct cell subtypes and labeling methods. As a result, a powerful deep learning system for WBC categorization based on MobilenetV3-ShufflenetV2 is described in this research. Initially, the WBC images are segmented using an efficient Pyramid Scene Parsing Network (PSPNet). Following that, MobilenetV3 and an Artificial Gravitational Cuckoo Search (AGCS)-based technique are used to extract and select the global and local features from the segmented images. Finally, the WBC images are divided into five classes using a ShufflenetV2 model. The proposed approach is evaluated on blood cell count and detection (BCCD) and Raabin-Wbc datasets and achieves 99.19% and 99% accuracy, respectively. Moreover, the results are satisfactory when compared to existing algorithms.
INDEX TERMS white blood cells, deep learning, MobilenetV3, ShufflenetV2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.