Tensor decomposition methods have beenrecently identified as an effective approach for compressing high-dimensional data. Tensors have a wide range of applications in numerical linear algebra, chemo metrics, data mining, signal processing, statics, and data mining and machine learning. Due to the huge amount of information that the hyper spectral images carry, they require more memory to store, process and send. We need to compress the hyper spectral images in order to reduce storage and processing costs. Tensor decomposition techniques can be used to compress the hyper spectral data. The primary objective of this work is to utilize tensor decomposition methods to compress the hyper spectral images. This paper explores three types of tensor decompositions: Tucker Decomposition (TD_ALS), CANDECOMP/PARAFAC (CP) and Tucker_HOSVD (Higher order singular value Decomposition) and comparison of these methods experimented on two real hyper spectral images: the Salinas image (512 x 217 x 224) and Indian Pines corrected (145 x 145 x 200). The PSNR and SSIM are used to evaluate how well these techniques work. When compared to the iterative approximation methods employed in the CP and Tucker_ALS methods, the Tucker_HOSVD method decomposes the hyper spectral image into core and component matrices more quickly. According to experimental analysis, Tucker HOSVD's reconstruction of the image preserves image quality while having a higher compression ratio than the other two techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.