In this paper an attempt has been made for linear and non linear modeling of resin bonded sand mould system using full factorial design of experiments and response surface methodology, respectively. It is important to note that the quality of castings produced using the resin bonded sand mould system depends largely on properties of moulds, which are influenced by the characteristics of sand, like type of sand, grain fineness number, grain size distribution and quantity and type of resin, catalyst, curing time etc. In the present study, percentage of resin, percentage of hardener, number of strokes and curing time are considered as input parameters and the mould properties, such as compression strength, shear strength, tensile strength and permeability are treated as responses. In the present work, phenol formaldehyde is used as the resin whereas tetrahydrophthalic anhydride as the hardener. A two level full factorial and three level central composite designs are utilized to develop input-output relationships. Surface plots and main effects plots are used to study the effects of amount of resign, amount of hardener, number of strokes and curing time on the responses, namely, compression strength, tensile strength, shear strength and permeability. Moreover, the adequacies of the developed models have been tested using analysis of variance. The prediction accuracy of the developed models have been tested with the help of twenty test cases and found reasonably good accuracy.
In this paper, the feasibility of glycerin/Al2O3 nanofluid for automotive cooling applications is experimentally studied. The test setup includes an engine model and a car radiator and the heat transfer characteristics at required operating conditions are analyzed under laminar flow conditions. Three different concentrations of nanofluids such as 0.05, 0.1 and 0.15 vol. % are used and the enhancement in the heat transfer coefficient is 62% when 0.15% volume concentration of nanoparticles are added to the base fluid (glycerin) at a constant heat flux of 6919 W/m 2 . The effectiveness of the radiator cooling system increases along with negligible increase in pumping power with increase of volume concentration. The addition of nanoparticles in the base fluid enhances the absorption capacity of the radiator coolant leading to the increase in the effectiveness. Results have also indicated that the nanofluids are mainly dependent on particle concentration, flow rates, and temperature. Hence, it is suggested that nanoparticle suspended coolants are promising and efficient for automotive cooling applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.