Layer-wise 3D surface morphology information is critical for the quality monitoring and control of additive manufacturing (AM) processes. However, most of the existing 3D scan technologies are either contact or time consuming, which are not capable of obtaining the 3D surface morphology data in a real-time manner during the process. Therefore, the objective of this study is to achieve real-time 3D surface data acquisition in AM, which is achieved by a supervised deep learning-based image analysis approach. The key idea of this proposed method is to capture the correlation between 2D image and 3D point cloud, and then quantify this relationship by using a deep learning algorithm, namely, convolutional neural network (CNN). To validate the effectiveness and efficiency of the proposed method, both simulation and real-world case studies were performed. The results demonstrate that this method has strong potential to be applied for real-time surface morphology measurement in AM, as well as other advanced manufacturing processes.
The matrix factorization algorithms such as the matrix factorization technique (MF), singular value decomposition (SVD) and the probability matrix factorization (PMF) and so on, are summarized and compared. Based on the above research work, a kind of improved probability matrix factorization algorithm called MPMF is proposed in this paper. MPMF determines the optimal value of dimension D of both the user feature vector and the item feature vector through experiments. The complexity of the algorithm scales linearly with the number of observations, which can be applied to massive data and has very good scalability. Experimental results show that MPMF can not only achieve higher recommendation accuracy, but also improve the efficiency of the algorithm in sparse and unbalanced data sets compared with other related algorithms.
The average of customer ratings on a product, which we call a reputation, is one of the key factors in online purchasing decisions. There is, however, no guarantee of the trustworthiness of a reputation since it can be manipulated rather easily. In this paper, we define false reputation as the problem of a reputation being manipulated by unfair ratings and design a general framework that provides trustworthy reputations. For this purpose, we propose Trust-reputation, an algorithm that iteratively adjusts a reputation based on the confidence of customer ratings. We also show the effectiveness of Trust-reputation through extensive experiments in comparisons to state-of-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.