Hafnium oxide (HfO 2) is the most frequently used high-index material in multilayer thin-film coatings for high-power laser applications ranging from near-infrared to near-ultraviolet (UV). Absorption in this high-index material is also known to be responsible for nanosecond-pulse laser-damage initiation in multilayers. In this work, modification of the near-UV absorption of HfO 2 monolayer films subjected to irradiation by continuouswave (cw), 355-nm or 351-nm laser light focused to produce power densities of the order of ∼100 kW∕cm 2 is studied. Up to a 70% reduction in absorption is found in the areas subjected to irradiation. Temporal behavior of absorption is characterized by a rapid initial drop on the few-tens-of-seconds time scale, followed by a longerterm decline to a steady-state level. Absorption maps generated by photothermal heterodyne imaging confirm the permanent character of the observed effect. Nanosecond-pulse, 351-nm and 600-fs, 1053-nm laser-damage tests performed on these cw laser-irradiated areas confirm a reduction of absorption by measuring up to 25% higher damage thresholds. We discuss possible mechanisms responsible for near-UV absorption annealing and damage-threshold improvement resulting from irradiation by near-UV cw laser light.
Resonant cavity detectors based on III–V materials have been designed, grown entirely by molecular beam epitaxy, fabricated, and tested. They offer a low noise (dark current densities of 0.4 mA/cm2 were measured at 298 K, close to the predicted value of 0.31 mA/cm2), narrow response detector (full width at half maximum of 57 nm in GaSb and 45 nm in InAs) in the mid-infrared region, with future applications in spectroscopy, gas sensing, and optical communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.