This study describes the verification of Wind Atlas Analysis and Application program (WAsP) modelled average wind speeds in a complex terrain. WAsP model was run using data collected at 3 masts: Kalkumpei, Nyiru and Sirima using cup anemometers and wind vanes for the entire 2009 calendar year and verified using data collected by WindTracer LIDAR (light detection and ranging) for 2 weeks from 11th to 24th July 2009. Evaluating WAsP mean wind speed map using LIDAR data showed that Nyiru station provides the best data to model mean wind speed over the wind farm domain with a mean difference of 0.16 m/s, root mean square error of 0.85 m/s and Index of Agreement of 0.61. Construction of a 310 MW windfarm has commenced at this site. Once completed, the windfarm will be operating 365 vestas V52-850kW turbines.
A nonlinear retrieval model was used to invert wave image data containing sunglint to obtain the elevation power spectrum. The sunglint images were thresholded to obtain binary glint images, from which the glint autocorrelation was calculated in one direction. A relationship was determined connecting the glint and slope random variables, which was then inverted to obtain the slope autocorrelation, from which the elevation power spectrum was obtained by integration and Fourier transform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.