The African buffalo (Syncerus caffer) is widespread throughout sub-Saharan Africa and is found in most major vegetation types, wherever permanent sources of water are available, making it physically able to disperse through a wide range of habitats. Despite this, the buffalo has been assumed to be strongly philopatric and to form large aggregations that remain within separate home ranges with little interchange between units, but the level of differentiation within the species is unknown. Genetic differences between populations were assessed using mitochondrial DNA (control region) sequence data and analysis of variation at six microsatellite loci among 11 localities in eastern and southern Africa. High levels of genetic variability were found, suggesting that reported severe population bottlenecks due to outbreak of rinderpest during the last century did not strongly reduce the genetic variability within the species. The high level of genetic variation within the species was found to be evenly distributed among populations and only at the continental level were we able to consistently detect significant differentiation, contrasting with the assumed philopatric behaviour of the buffalo. Results of mtDNA and microsatellite data were found to be congruent, disagreeing with the alleged male-biased dispersal. We propose that the observed pattern of the distribution of genetic variation between buffalo populations at the regional level can be caused by fragmentation of a previous panmictic population due to human activity, and at the continental level, reflects an effect of geographical distance between populations.
Despite ample focus on this endangered species, conservation planning for chimpanzees residing outside Africa has proven a challenge because of the lack of ancestry information. Here, we analysed the largest number of chimpanzee samples to date, examining microsatellites in 4100 chimpanzees from the range of the species in Africa, and 20% of the European zoo population. We applied the knowledge about subspecies differentiation throughout equatorial Africa to assign origin to chimpanzees in the largest conservation management programme globally. A total of 63% of the genotyped chimpanzees from the European zoos could be assigned to one of the recognized subspecies. The majority being of West African origin (40%) will help consolidate the current breeding programme for this subspecies and the identification of individuals belonging to the two other subspecies so far found in European zoos can form the basis for breeding programmes for these. Individuals of various degree of mixed ancestry made up 37% of the genotyped European zoo population and thus highlight the need for appropriate management programmes guided by genetic analysis to preserve maximum genetic diversity and reduce hybridization among subspecies.
Two subspecies of waterbuck (Kobus ellipsiprymnus), common (Kobus ellipsiprymnus ellipsiprymnus) and defassa (Kobus ellipsiprymnus defassa), are recognized based on differences in rump pattern, coat colour and geographical distribution. These forms are parapatrically distributed with an area of range overlap in East Africa, where phenotypically intermediate populations occur. Variation in 478 bp of the mitochondrial DNA control region and 14 polymorphic microsatellite loci were used to describe the genetic structure and phylogeographical pattern of the species, and to assess if the intermediate populations are the results of hybridization. In total, 186 individuals from 11 localities were analysed. A high degree of genetic differentiation was found between subspecies, although this was most evident from the microsatellite data. Hybridization was suggested in the phenotypically and geographically intermediate Nairobi NP population in Kenya. A neighbour-joining (NJ) tree based on microsatellite population genetic distances grouped Nairobi between the common and defassa populations, and a Bayesian analysis clearly showed introgression. Individuals sampled in Samburu NP, Kenya, had a common waterbuck phenotype, but introgression was suggested by both markers. Although a high degree of maternal defassa input was indicated from the sequence data, the Samburu population grouped with the common waterbuck in the microsatellite population genetic distance tree, with high support. Analyses of linkage disequilibrium and maximum-likelihood estimates of genetic drift suggested that admixture between subspecies is a recent event. The fact that introgression is limited between subspecies could be caused by chromosomal differences, hindering gene flow between common and defassa waterbuck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.