Methane (CH 4 ) emission by carbon-rich cryosols at the high latitudes in Northern Hemisphere has been studied extensively. In contrast, data on the CH 4 emission potential of carbon-poor cryosols is limited, despite their spatial predominance. This work employs CH 4 flux measurements in the field and under laboratory conditions to show that the mineral cryosols at Axel Heiberg Island in the Canadian high Arctic consistently consume atmospheric CH 4 . Omics analyses present the first molecular evidence of active atmospheric CH 4 -oxidizing bacteria (atmMOB) in permafrost-affected cryosols, with the prevalent atmMOB genotype in our acidic mineral cryosols being closely related to Upland Soil Cluster α. The atmospheric (atm) CH 4 uptake at the study site increases with ground temperature between 0°C and 18°C. Consequently, the atm CH 4 sink strength is predicted to increase by a factor of 5-30 as the Arctic warms by 5-15°C over a century. We demonstrate that acidic mineral cryosols are a previously unrecognized potential of CH 4 sink that requires further investigation to determine its potential impact on larger scales. This study also calls attention to the poleward distribution of atmMOB, as well as to the potential influence of microbial atm CH 4 oxidation, in the context of regional CH 4 flux models and global warming.
The total community genomic DNA (gDNA) from permafrost was extracted using four commercial DNA extraction kits. The gDNAs were compared using quantitative real‐time PCR (qPCR) targeting 16S rRNA genes and bacterial diversity analyses obtained via 454 pyrosequencing of the 16S rRNA (V3 region) amplified in single or nested PCR. The FastDNA® SPIN (FDS) Kit provided the highest gDNA yields and 16S rRNA gene concentrations, followed by MoBio PowerSoil® (PS) and MoBio PowerLyzer™ (PL) kits. The lowest gDNA yields and 16S rRNA gene concentrations were from the Meta‐G‐Nome™ (MGN) DNA Isolation Kit. Bacterial phyla identified in all DNA extracts were similar to that found in other soils and were dominated by Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Acidobacteria. Weighted UniFrac and statistical analyses indicated that bacterial community compositions derived from FDS, PS, and PL extracts were similar to each other. However, the bacterial community structure from the MGN extracts differed from other kits exhibiting higher proportions of easily lysed β‐ and γ‐Proteobacteria and lower proportions of Actinobacteria and Methylocystaceae important in carbon cycling. These results indicate that gDNA yields differ between the extraction kits, but reproducible bacterial community structure analysis may be accomplished using gDNAs from the three bead‐beating lysis extraction kits.
Previous studies investigating organic-rich tundra have reported that increasing biodegradation of Arctic tundra soil organic carbon (SOC) under warming climate regimes will cause increasing CO 2 and CH 4 emissions. Organic-poor, mineral cryosols, which comprise 87% of Arctic tundra, are not as well characterized. This study examined biogeochemical processes of 1 m long intact mineral cryosol cores (1-6% SOC) collected in the Canadian high Arctic. Vertical profiles of gaseous and aqueous chemistry and microbial composition were related to surface CO 2 and CH 4 fluxes during a simulated spring/summer thaw under light versus dark and in situ versus water saturated treatments. CO 2 fluxes attained 0.8 ± 0.4 mmol CO 2 m À2 h À1 for in situ treatments, of which 85 ± 11% was produced by aerobic SOC oxidation, consistent with field observations and metagenomic analyses indicating aerobic heterotrophs were the dominant phylotypes. The Q 10 values of CO 2 emissions ranged from 2 to 4 over the course of thawing. CH 4 degassing occurred during initial thaw; however, all cores were CH 4 sinks at atmospheric concentration CH 4 . Atmospheric CH 4 uptake rates ranged from À126 ± 77 to À207 ± 7 nmol CH 4 m À2 h À1 with CH 4 consumed between 0 and 35 cm depth.Metagenomic and gas chemistry analyses revealed that high-affinity Type II methanotrophic sequence abundance and activity were highest between 0 and 35 cm depth. Microbial sulfate reduction dominated the anaerobic processes, outcompeting methanogenesis for H 2 and acetate. Fluxes, microbial community composition, and biogeochemical rates indicate that mineral cryosols of Axel Heiberg Island act as net CO 2 sources and atmospheric CH 4 sinks during summertime thaw under both in situ and water saturated states.
Microbial release of greenhouse gases from thawing permafrost is a global concern. Seventy-six metagenomes were generated from low-soil-organic-carbon mineral cryosols from Axel Heiberg Island, Nunavut, Canada, during a controlled thawing experiment. Permafrost thawing resulted in an increase in anaerobic fermenters and sulfate-reducing bacteria but not methanogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.