In the recent years different types of dampers for structural control in civil engineering have been developed, where one of the most promising solutions are viscoelastic dampers. In this paper we demonstrate that by utilizing knowledge on the effect of inherent hydrostatic pressure on the time- and frequency-dependent behavior of polymers it is possible to design and build the ultimate insulation systems for civil engineering applications. An optimal solution is achieved by using highly pressurized multimodal granular polymeric materials. The results on case material, Thermoplastic Polyurethane, showed that by increasing inherent pressure of the material from 1 bar to 2000 bar the frequency at which material exhibits its maximal damping properties was shifted from 37 kHz, at P=1 bar to 235 Hz at P=2000 bar. At the same time, the increase of inherent hydrostatic pressure from 1 bar to 2000 bar changes material stiffness up to 2.5 times, while the damping properties increase up to 5.2 times.
This work is devoted to the mathematical and numerical modeling of atmospheric processes based on the ensemble-averaged Navier-Stokes equations with the implementation of large eddy simulation. Within the real scientific research work are shown features of modeling atmospheric processes, the mathematical model of dynamic processes was developed in the average atmosphere, the numerical scheme and algorithm of the problem solution were developed, and realization of the problem characterized by instability of Rayleigh-Taylor about convective mass substances transfer with various densities was made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.