This paper deals with a phenomenon often occurring in sewers during storm events - transition from free surface to pressurized flow and vice versa. This transition is also possible in sewers where the discharge is controlled by some control devices, like gates. Experiments were carried out at a test rig consisting of a circular pipe with gates at the upstream and the downstream ends. Because of the relatively steep slope of the pipe and upstream boundary condition (flow below the gate), free surface flow at the upstream end was always supercritical, so that a hydraulic jump was always present during transitions (transcritical flow). Experimental results were used for verification of a numerical model based on a shock capturing method, the McCormack explicit finite difference scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.