Abstract. Aerosol physical and chemical properties and trace gas concentrations were measured during the QUEST field campaign in March-April 2003, in Hyytiälä, Finland. Our aim was to understand the role of oxidation products of VOC's such as mono-and sesquiterpenes in atmospheric nucleation events. Particle chemical compositions were measured using the Aerodyne Aerosol Mass Spectrometer, and chemical compositions of aerosol samples collected with low-pressure impactors and a high volume sampler were analysed using a number of techniques. The results indicate that during and after new particle formation, all parti-cles larger than 50 nm in diameter contained similar organic substances that are likely to be mono-and sesquiterpene oxidation products. The oxidation products identified in the high volume samples were shown to be mostly aldehydes. In order to study the composition of particles in the 10-50 nm range, we made use of Tandem Differential Mobility Analyzer results. We found that during nucleation events, both 10 and 50 nm particle growth factors due to uptake of ethanol vapour correlate strongly with gas-phase monoterpene oxidation product (MTOP) concentrations, indicating that the organic constituents of particles smaller than 50 nm in diameter are at least partly similar to those of larger particles. We furthermore showed that particle growth rates during the nucleation events are correlated with the gas-phase MTOP Published by Copernicus Publications on behalf of the European Geosciences Union. 2658A. Laaksonen et al.: VOC oxidation products and new particle formation concentrations. This indicates that VOC oxidation products may have a key role in determining the spatial and temporal features of the nucleation events. This conclusion was supported by our aircraft measurements of new 3-10 nm particle concentrations, which showed that the nucleation event on 28 March 2003, started at the ground layer, i.e. near the VOC source, and evolved together with the mixed layer. Furthermore, no new particle formation was detected upwind away from the forest, above the frozen Gulf of Bothnia.
Abstract. Biogenic VOCs are important in the growth and possibly also in the early stages of formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer) and took place during a twoweek period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS) instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68 amu (candidate=isoprene), monoterpenes, methyl vinyl ketone (MVK) and methacrolein (MaCR) and monoterpene oxidation products (MTOP). For all of them except for the amines, we present daily variations during different classes of nucleation events, and non-event days. BVOC oxidation products (MVK, MaCR and MTOP) show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days. Moreover, BVOC oxidation products are found to show significant correlations with the condensational sink (CS) on nucleation event days, which indicates that they are representative of less volatile organic compounds that contribute to the growth of the nucleated particles and generally secondary organic aerosol formation. Behaviors of BVOC on event and non event days are compared to the behavior of CO.
Abstract. The EU-project MINATROC (MINeral dust And TROpospheric Chemistry) aims at enabling an estimation of the influence of mineral dust, a major, but to date largely ignored component of tropospheric aerosol, on tropospheric oxidant cycles. Within the scope of this project continuous atmospheric measurements of gas-phase HNO 3 and SO 2 were conducted in June and July 2000 at the CNR WMO station, situated on Monte Cimone (MTC) (44 • 11 N -10 • 42 E, 2165 m asl), Italy. African air transporting dust is occasionally advected over the Mediterranean Sea to the site, thus mineral aerosol emitted from Africa will encounter polluted air masses and provide ideal conditions to study their interactions. HNO 3 and SO 2 were measured with an improved CIMS (chemical ionization mass spectrometry) system for ground-based measurements that was developed and built at MPI-K Heidelberg. Since HNO 3 is a very sticky compound special care was paid for the air-sampling and backgroundmeasurement system. Complete data sets could be obtained before, during and after major dust intrusions. For the first time these measurements might provide a strong observational indication of efficient uptake of gas-phase HNO 3 by atmospheric mineral-dust aerosol particles.
Abstract. Measurements of atmospheric volatile organic compounds were performed in the Finnish Boreal forest atmosphere during spring 2003, as part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer), using a ground-based Chemical Ionization Mass Spectrometer (CIMS) instrument. Based on the study of their hydrate distribution, methanol, acetonitrile, acetaldehyde, dimethyl amine (DMA), ethanol/formic acid, acetone, trimethyl amine (TMA), propanol/acetic acid, isoprene, methyl vinyl ketone (MVK) and metacrolein (MaCR), monoterpenes and monoterpene oxidation product (MTOP) are proposed as candidates for masses 32, 41, 44, 45, 46, 58, 59, 60, 68, 70, 136, and 168 amu, respectively. It would be, to our knowledge, the first time DMA, TMA and MTOP are measured with this method. Most compounds show a clear diurnal variation with a maximum in the early night, corresponding to the onset of the noctural inversion and in agreement with independant measurements of CO. Biogenic compounds are highly correlated with each other and the ratio monoterpene/oxidation product shows a typical daily pattern of nightime maxima. However, because isoprene mixing ratios are also maximum during the early night, it is likely that it suffers of the interference from another unidentified biogenic compound. Hence mass 68 amu is identified as isoprene+compound X.
Abstract. Atmospheric new particle formation is generally thought to occur due to homogeneous or ion-induced nucleation of sulphuric acid. We compare ambient nucleation rates with laboratory data from nucleation experiments involving either sulphuric acid or oxidized SO 2 . Atmospheric nucleation occurs at H 2 SO 4 concentrations 2-4 orders of magnitude lower than binary or ternary nucleation rates of H 2 SO 4 produced from a liquid reservoir, and atmospheric H 2 SO 4 concentrations are very well replicated in the SO 2 oxidation experiments. We hypothesize these features to be due to the formation of free HSO 5 radicals in pace with H 2 SO 4 during the SO 2 oxidation. We suggest that at temperatures above ∼250 K these radicals produce nuclei of new aerosols much more efficiently than H 2 SO 4 . These nuclei are activated to further growth by H 2 SO 4 and possibly other trace species. However, at lower temperatures the atmospheric relative acidity is high enough for the H 2 SO 4 -H 2 O nucleation to dominate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.