STUDY QUESTION Can ovarian tissue morphology be better preserved whilst enabling histological molecular analyses following fixation with a novel fixative, neutral buffered formalin (NBF) with 5% acetic acid (referred to hereafter as Form-Acetic)? SUMMARY ANSWER Fixation with Form-Acetic improved ovarian tissue histology compared to NBF in multiple species while still enabling histological molecular analyses. WHAT IS KNOWN ALREADY NBF fixation results in tissue shrinkage in various tissue types including the ovary. Components of ovarian tissue, notably follicles, are particularly susceptible to NBF-induced morphological alterations and can lead to data misrepresentation. Bouin’s solution (which contains 5% acetic acid) better preserves tissue architecture compared to NBF but is limited for immunohistochemical analyses. STUDY DESIGN, SIZE, DURATION A comparison of routinely used fixatives, NBF and Bouin’s, and a new fixative, Form-Acetic was carried out. Ovarian tissue was used from three different species: human (n = 5 patients), sheep (n = 3; 6 ovaries; 3 animals per condition) and mouse (n = 14 mice; 3 ovaries from 3 different animals per condition). PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian tissue from humans (aged 13 weeks to 32 years), sheep (reproductively young i.e. 3–6 months) and mice (10 weeks old) were obtained and fixed in 2 ml NBF, Bouin’s or Form-Acetic for 4, 8, and 24 h at room temperature. Tissues were embedded and sectioned. Five-micron sections were stained with haemotoxylin and eosin (H&E) and the percentage of artefact (clear space as a result of shrinkage) between ovarian structures was calculated. Additional histological staining using Periodic acid-Schiff and Masson’s trichrome were performed on 8 and 24 h NBF, Bouin’s and Form-Acetic fixed samples to assess the compatibility of the new fixative with stains. On ovarian tissue fixed for both 8 and 24 h in NBF and Form-Acetic, immunohistochemistry (IHC) studies to detect FOXO3a, FoxL2, collagen IV, laminin and anti-Müllerian hormone (AMH) proteins were performed in addition to the terminal deoxynucleotidyl transferase nick end labelling (TUNEL) assay to determine the compatibility of Form-Acetic fixation with types of histological molecular analyses. MAIN RESULTS AND THE ROLE OF CHANCE Fixation in Form-Acetic improved ovarian tissue morphology compared to NBF from all three species and either slightly improved or was comparable to Bouin’s for human, mouse and sheep tissues. Form-Acetic was compatible with H&E, Periodic acid-Schiff and Masson’s trichrome staining and all proteins (FOXO3a, FoxL2, collagen IV and laminin and AMH) could be detected via IHC. Furthermore, Form-Acetic, unlike NBF, enabled antigen recognition for most of the proteins tested without the need for antigen retrieval. Form-Acetic also enabled the detection of damaged DNA via the TUNEL assay using fluorescence. LARGE SCALE DATA N/A LIMITATIONS, REASONS FOR CAUTION In this study, IHC analysis was performed on a select number of protein types in ovarian tissue thus encouraging further studies to confirm the use of Form-Acetic in enabling the detection of a wider range of protein forms in addition to other tissue types. WIDER IMPLICATIONS OF THE FINDINGS The simplicity in preparation of Form-Acetic and its superior preservative properties whilst enabling forms of histological molecular analyses make it a highly valuable tool for studying ovarian tissue. We, therefore, recommend that Form-Acetic replaces currently used fixatives and encourage others to introduce it into their research workflow. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Oxford Medical Research Council Doctoral Training Programme (Oxford MRC-DTP) grant awarded to B.D.B. (Grant no. MR/N013468/1), the Fondation Hoffmann supporting R.A. and the Petroleum Technology Development Fund (PTDF) awarded to B.V.A.
Lay summary To visualise tissues to determine the presence of disease or simply to understand anatomy, it is important to preserve fresh tissue. Fixatives are chemical solutions that preserve tissues to enable microscopic evaluation. However, some fixatives introduce artefact such as shrinkage of cells. Recently, a new fixative, Form-Acetic, was developed that is superior for preserving the structure of ovary tissue and allows investigation of ovary composition. One component of the ovary is hyaluronic acid (HA), which plays a crucial role in normal ovary function and fertility. Importantly, HA is sensitive to different fixative solutions. Therefore, it is meaningful to verify whether Form-Acetic is suitable for detecting HA. In this study, adult mouse ovaries were fixed in Form-Acetic and HA was detected. All HA-containing structures in the ovary were clearly distinguished which proves that the novel fixative allows the detection of HA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.