Abstract: Most of the documents in various application areas like Government, Business and Research are available in the form of bi-lingual/multi-lingual text document. The multilingual documents are captured from video/camera for identification of script of the text document for automatic reading and editing. In this paper, an attempt is made to address the problem of script identification from camera captured document images using SFTA features. The input image is decomposed into a group of binary images by applying TTBD with fixing the number of the threshold as t n =3 empirically, on each decomposed binary image, Box Count, Mean Gray Level, and Pixel Count are extracted to form the feature vector. This feature vector is submitted to K-NN classifier to identify the scripts of the input document image. In all 10 scripts of the Indian languages are considered along with common English language as bi-lingual documents. The novelty of the paper is that 7 features are selected as potential features to obtain the highest accuracy. Features like Box Count (3), Mean Gray Level(2), and Pixel Count (2) have obtained the 87.02% recognition accuracy for English and Hindi Script combinations for the collected dataset and encouraging results for other combinations. These 7 potential features were selected using the technique named as feed-forward feature selection, from the set all 18 features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.