A phthalocyanine molecule adsorbed on the (101[combining macron]0) surface of wurtzite CdSe is theoretically modeled by the DFT method. We have found that a linker does not affect substantially the redox properties of phthalocyanine, while saturation of the macrocycle with peripheral substituent groups causes a downward shift in the energy position of its frontier orbitals that can hinder electron injection to the CdSe surface. Tilting of the phthalocyanine molecule relative to the surface also leads to the lowering of its molecular electronic levels relative to the bands of CdSe. At a tilting angle of 30°, the LUMO level of the dye appears to be lower than the conduction band minimum of cadmium selenide, which makes the electron transfer to its hybridized surface unfavorable. By contrast, the HOMO level of the phenylbutyric acid linker provides a suitable intermediate channel for the hole transfer from the valence band of CdSe to the phthalocyanine that points to the possible acceptor behavior of the phthalocyanine molecule in its hybrids with CdSe nanostructures.
Macrocyclic dyes such as phthalocyanine and porphyrin molecules are modeled on (1010) wurzite surfaces using the DFT and molecular dynamics approaches. It is found that the single dye anchored on the wurtzite surface stabilizes in an inclined geometry with its core facing the surface at a tilting angle of ca 60∘. The tilting of the dye relative to the crystal surface has a dual effect on the charge transfer from a chromophore to the semiconductor. Increasing the tilting angle leads to a stronger coupling between the lowest level of the semiconductor conduction band and dye’s LUMO, thus raising the tunneling probability of the electron injection. By contrast, the electrostatic interaction between units upon the tilting of macrocycles results in a lowering of the molecule LUMO level with respect to the conduction band minimum of the wurzite crystal, which may hinder the electron transfer. The type of a linker and peripheral substituents significantly affect the mutual conformation of the moieties, and their proper choice can facilitate the photoinduced charge transfer reactions.
Interaction of SnO2-and In2O3-based sensors with the reducing CO and CH4 gases in a humid atmosphere has been studied. The atmospheric moisture is shown to have a significant influence on the sensor conductivity, as well as on the correlation between the sensor sensitivity and catalytic activity. The results obtained are analogous for various oxides and reducing gases. The mechanism of interaction of a reducing gas with the oxide surface in the humid environment is proposed. Using the calculations carried out in the framework of the density functional theory, two different types of hydroxyl radicals on the oxide surface are identified. They differently affect the conductivity and sensitivity of the sensor at its interaction with reducing gases. The proposed model is experimentally confirmed by joint measurements of the sensitivity and catalytic activity of studied oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.