Recommender system (RS) is a unique type of information clarification system that anticipates the user's evaluation of items from a large pool based on the expectations of a single stakeholder. The proposed system is highly useful for getting expected meaning suggestions and guidance for choosing the proper product using artificial intelligence and IoT (Internet of Things) such as chatbot. The current proposed technique makes it easier for stakeholders to make context-based decisions that are optimal rather than reactive, such as which product to buy, news classification based on high filtering views, highly recommended wanted music to choose, and desired product to choose. Recommendation systems are a critical tool for obtaining verified information and making accurate decisions. As a result, operational efficiency would skyrocket, and the risk to the company that uses a recommender system would plummet. This proposed solution can be used in a variety of applications such as commercial hotels OYO and other hotels, hospitals (GYAN), public administrative applications banks HDFC, and ICICI to address potential questions on the spot using intelligence computing as a recommendation system. The existing RS is considering a few factors such as buying records, classification or clustering items, and user's geographic location. Collaborative filtering algorithms (CFAs) are much more common approaches for cooperating to mesh the respective documents they retrieved from the historical data. CFAs are distinguished in plenty of features that are uncommon from other algorithms. In this existing system classification, precision and efficiency and error rate are statistical measurements that need to be enhanced according to the current need to fit for global requirements. The proposed work deals with enhancing accuracy levels of text reviews with the recommender system while interacting by the numerous users for their domains. The authors implemented the recommender system using a user-based CF method and presented the significance of collaborative filtering on the movie domain with a recommender system. This whole experiment has been implanted using the RapidMiner Java-based tool. Results have been compared with existing algorithms to differentiate the efficiency of the current proposed approach.
An explicit extraction of the retinal vessel is a standout amongst the most significant errands in the field of medical imaging to analyze both the ophthalmological infections, for example, Glaucoma, Diabetic Retinopathy (DR), Retinopathy of Prematurity (ROP), Age-Related Macular Degeneration (AMD) as well as non retinal sickness such as stroke, hypertension and cardiovascular diseases. The state of the retinal vasculature is a significant indicative element in the field of ophthalmology. Retinal vessel extraction in fundus imaging is a difficult task because of varying size vessels, moderately low distinction, and presence of pathologies such as hemorrhages, microaneurysms etc. Manual vessel extraction is a challenging task due to the complicated nature of the retinal vessel structure, which also needs strong skill set and training. In this paper, a supervised technique for blood vessel extraction in retinal images using Modified Adaboost Extreme Learning Machine (MAD-ELM) is proposed. Firstly, the fundus image preprocessing is done for contrast enhancement and inhomogeneity correction. Then, a set of core features is extracted, and the best features are selected using "minimal Redundancy-maximum Relevance (mRmR)." Later, using MAD-ELM method vessels and non vessels are classified. DRIVE and DR-HAGIS datasets are used for the evaluation of the proposed method. The algorithm's performance is assessed based on accuracy, sensitivity and specificity. The proposed technique attains accuracy of 0.9619 on the DRIVE database and 0.9519 on DR-HAGIS database, which contains pathological images. Our results show that, in addition to healthy retinal images, the proposed method performs well in extracting blood vessels from pathological images and is therefore comparable with state of the art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.