The dynamical theory, which describes both diffraction profiles and reciprocal space maps measured from imperfect crystals with account for instrumental factors of triple‐crystal diffractometer (TCD), has been developed for adequate quantitative characterization of microdefects. Analytical expressions for coherent and diffuse scattering (DS) intensities measured by TCD in the Bragg diffraction geometry have been derived by using the generalized statistical dynamical theory of X‐ray scattering in real single crystals with randomly distributed defects. The DS intensity distributions from single crystals containing clusters and dislocation loops have been described by explicit analytical expressions. Particularly, these expressions take into account anisotropy of displacement fields around defects with discrete orientations. Characteristics of microdefect structures in silicon single crystals grown by Czochralsky‐ and float‐zone methods have been determined by analyzing the measured TCD profiles and reciprocal space maps. The sensitivities of reciprocal space maps and diffraction profiles to defect characteristics have been compared.
The quantitative characterization of complex microdefect structures in silicon crystals grown by Czochralski method and irradiated with various doses of high-energy electrons (18 MeV) has been performed by methods of the highresolution X-ray diffraction. The concentrations and average sizes of dislocation loops and oxygen precipitates have been determined by using the combined treatment of reciprocal space maps and rocking curves based on the analytical formulas of the statistical dynamical theory of X-ray diffraction by imperfect crystals with randomly distributed microdefects of several types.
Оттиски доступны непосредственно от издателя Фотокопирование разрешено только в соответствии с лицензией 2014 ИМФ (Институт металлофизики им. Г. В. Курдюмова НАН Украины) Напечатано в Украине.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.