Norwalk virus, a noncultivatable human calicivirus, is the major cause of epidemic gastroenteritis in humans. The first x-ray structure of a calicivirus capsid, which consists of 180 copies of a single protein, has been determined by phase extension from a low-resolution electron microscopy structure. The capsid protein has a protruding (P) domain connected by a flexible hinge to a shell (S) domain that has a classical eight-stranded beta-sandwich motif. The structure of the P domain is unlike that of any other viral protein with a subdomain exhibiting a fold similar to that of the second domain in the eukaryotic translation elongation factor-Tu. This subdomain, located at the exterior of the capsid, has the largest sequence variation among Norwalk-like human caliciviruses and is likely to contain the determinants of strain specificity and cell binding.
As with many other viruses, the initial cell attachment of rotaviruses, major causative agent of infantile gastroenteritis, is mediated by interactions with specific cellular glycans1–4. The distally located VP8* domain of the rotavirus spike protein VP45 mediates such interactions. The existing paradigm is that ‘sialidase-sensitive’ animal rotavirus strains bind to glycans with terminal sialic acid (Sia), whereas ‘sialidase-insensitive’ human rotavirus (HR) strains bind to glycans with internal Sia such as GM13. Although the involvement of Sia in the animal strains is firmly supported by crystallographic studies1,3,6,7, it is not yet known how VP8* of HRs interacts with Sia and whether their cell attachment necessarily involves sialoglycans. We found that VP8* of a HR strain specifically recognizes A-type histo-blood group antigen (HBGA) using a glycan array screen comprised of 511 glycans, and that virus infectivity in HT-29 cells is abrogated by anti-Atype antibodies as well as significantly enhanced in CHO cells genetically modified to express the A-type HBGA, providing a novel paradigm for initial cell attachment of HR. HBGAs are genetically determined glycoconjugates present in mucosal secretions, epithelial and on red blood cells8, and are recognized as susceptibility and cell attachment factors for gastric pathogens like H. pylori9 and noroviruses10. Our crystallographic studies show that the A-type HBGA binds to the HR VP8* at the same location as the Sia in the VP8* of animal rotavirus, and suggest how subtle changes within the same structural framework allow for such receptor switching. These results raise the possibility that host susceptibility to specific HR strains and pathogenesis are influenced by genetically controlled expression of different HBGAs among the world’s population.
Members of Norovirus, a genus in the family Caliciviridae, are causative agents of epidemic diarrhea in humans. Susceptibility to several noroviruses is linked to human histo-blood type, and its determinant histo-blood group antigens (HBGAs) are regarded as receptors for these viruses. Specificity for these carbohydrates is strain-dependent. Norwalk virus (NV) is the prototype genogroup I norovirus that specifically recognizes A-and H-type HBGA, in contrast to genogroup II noroviruses that exhibit a more diverse HBGA binding pattern. To understand the structural basis for how HBGAs interact with the NV capsid protein, and how the specificity is achieved, we carried out x-ray crystallographic analysis of the capsid protein domain by itself and in complex with A-and H-type HBGA at a resolution of Ϸ1.4 Å. Despite differences in their carbohydrate sequence and linkage, both HBGAs bind to the same surface-exposed site in the capsid protein and project outward from the capsid surface, substantiating their possible role in initiating cell attachment. Precisely juxtaposed polar side chains that engage the sugar hydroxyls in a cooperative hydrogen bonding and a His/Trp pair involved in a cation-interaction contribute to selective and specific recognition of A-and H-type HBGAs. This unique binding epitope, confirmed by mutational analysis, is highly conserved, but only in the genogroup I noroviruses, suggesting that a mechanism by which noroviruses infect broader human populations is by evolving different sites with altered HBGA specificities.norovirus ͉ receptors ͉ x-ray crystallography ͉ cation-interaction
Non-enveloped virus particles (those that lack a lipid-bilayer membrane) must breach the membrane of a target host cell to gain access to its cytoplasm. So far, the molecular mechanism of this membrane penetration step has resisted structural analysis. The spike protein VP4 is a principal component in the entry apparatus of rotavirus, a non-enveloped virus that causes gastroenteritis and kills 440,000 children each year. Trypsin cleavage of VP4 primes the virus for entry by triggering a rearrangement that rigidifies the VP4 spikes. We have determined the crystal structure, at 3.2 A resolution, of the main part of VP4 that projects from the virion. The crystal structure reveals a coiled-coil stabilized trimer. Comparison of this structure with the two-fold clustered VP4 spikes in a approximately 12 A resolution image reconstruction from electron cryomicroscopy of trypsin-primed virions shows that VP4 also undergoes a second rearrangement, in which the oligomer reorganizes and each subunit folds back on itself, translocating a potential membrane-interaction peptide from one end of the spike to the other. This rearrangement resembles the conformational transitions of membrane fusion proteins of enveloped viruses.
In double-stranded-RNA (dsRNA) viruses found in animals, bacteria and yeast, the genome is transcribed within the structurally intact core of the virion with extraordinary efficiency. The structural organization of the genome and the enzymes involved in the transcription inside any of these viruses, critical for understanding this process, is not known. Here we report what we believe is the first three-dimensional characterization of the viral genome and the transcription complex in a prototypical dsRNA virus. Rotavirus is a large (diameter 1,000 A) icosahedral virus composed of three capsid protein layers and 11 dsRNA segments. It is the most important cause of gastroenteritis in children, accounting for over a million deaths annually. We show that viral dsRNA forms a dodecahedral structure in which the RNA double helices, interacting closely with the inner capsid layer, are packed around the enzyme complex located at the icosahedral 5-fold axes. The ordered RNA accounts for about 4,500 out of a total 18,525 base pairs in the genome, the largest amount of icosahedrally ordered RNA observed in any virus structure to date. We propose that the observed organization of the dsRNA is conducive for an orchestrated movement of the RNA relative to the enzyme complex during transcription.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.