Fabrication of net shape load bearing implants with complex anatomical shapes to meet desired mechanical and biological performance is still a challenge. In this article, an overview of our research activities is discussed focusing on application of Laser Engineered Net Shaping (LENS) toward load bearing implants to increase in vivo life time. We have demonstrated that LENS can fabricate net shape, complex metallic implants with designed porosities up to 70 vol.% to reduce stress-shielding. The effective modulus of Ti, NiTi, and other alloys was tailored to suit the modulus of human cortical bone by introducing 12-42 vol.% porosity. In addition, laser processed porous NiTi alloy samples show a 2-4% recoverable strain, a potentially significant result for load bearing implants. To minimize the wear induced osteolysis, unitized structures with functionally graded Co-Cr-Mo coating on porous Ti6Al4V were also made using LENS, which showed high hardness with excellent bone cell-materials interactions. Finally, LENS is also being used to fabricate porous, net shape implants with a functional gradation in porosity characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.