Abstract-EUCARD2 aims to research ReBCO superconducting magnets for future accelerator applications. The properties of ReBCO conductors are very different from low temperature superconductors. To investigate dynamic field quality, stability and normal zone propagation an electrical network model for coated conductor cables was developed. To validate the model two identical samples were prepared at CERN after which measurements were taken at the University of Twente and Southampton University. The model predicts that for Roebel cable, in a changing magnetic field applied in the perpendicular direction, the hysteresis loss is much larger than the coupling loss. In the case of a changing magnetic field applied parallel to the cable coupling loss is dominant. In the first case the experiment is in good agreement with the model. In the second case the data can only be compared qualitatively because the calibration for the inductive measurement is not available.
In the frame of the EuCARD2 collaboration, aimed at developing the technology for 20 T class accelerator magnets, several demonstrator dipole magnets are being built using high critical current density and fully transposed ReBCO tape-based Roebel-type cables. In accelerator magnets the dynamic magnetic field quality is one of the key parameters, which is affected by the effective interstrand resistances in the cables. For this reason, measurements of the inter-strand resistances on ReBCO Roebel cables were carried out at 4.2 and 77 K. Acquiring these data is also essential for input of cable simulation models. The cable samples are impregnated with epoxy resin to reduce the effect of transverse stress degradation due to Lorentz forces acting on the strands in the Roebel cables. The measured inter-strand resistance is used to estimate the AC coupling loss in different magnetic field orientations. Moreover, the contributions of diverse interface contact resistances to overall inter-strand resistance of Roebel cables were determined using a novel theoretical model. For validation, the AC loss of cables were examined in various orientations of applied field at 4.2 K. With three analytical models the hysteresis loss was calculated and compared to the measured data. The average inter-strand resistance of the cable samples impregnated with the unfilled epoxy CTD-101K range from 3 to 16 μΩ at 77 K and 1.5 to 9 μΩ at 4.2 K. Between the tapes the copper to copper interface resistance dominates the inter-strand resistance of impregnated Roebel cables. The calculated and measured AC loss for the CTD-101K impregnated Roebel cable lead to equivalent conclusions that the coupling loss is lower than the hysteresis loss within the range of the experiment. These observations substantially differ from earlier results extracted from a similar cable but impregnated with the alumina-filled epoxy resin CTD-101G, which showed considerable coupling loss when exposed to magnetic field parallel the wide face of the cable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.