In the present work, green synthesis of silver nanoparticles (AgNPs) using a natural phytochemical agent has been described. The aqueous latex from Musa paradisiaca peduncle has been utilized as reducing as well as stabilizing agent. The formation of AgNPs was optimized by varying latex and AgNO3 concentrations and finally reaction time. Ultraviolet-visible spectroscopic analysis showed the surface plasmon resonance peak between 350 and 450 nm confirms the formation of silver nanoparticles. X-ray powder diffraction analysis revealed the crystalline nature of AgNPs, Fourier transform infrared spectroscopy analysis revealed that AgNPs were stabilized by polyphenols and other aromatics present in the Musa Paradisiaca peduncle latex, while X-ray energy dispersive spectroscopy confirms the metallic nature. The field emission scanning electron microscopy and high resolution transmission electron microscopy showed the spherical shape of the particles and size distribution of AgNPs measured by dynamic light scattering which are in the range of 40 to 50 nm. The synthesized AgNPs showed photocatalytic activity on the degradation / removal of the methylene blue dye and the antimicrobial activity against Pseudomonas aeruginosa, Staphylococcus aureus and Klebseilla bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.