Targeted cancer chemotherapy is a novel approach developed for the specific delivery of anticancer drugs. Tumour targeting can be achieved by combining a chemotherapeutic agent with a targeting moiety that recognizes tumour-specific or highly expressed receptors on cancer cells. We used the gonadotropin-releasing hormone-III (GnRH-III) as a targeting moiety to which the chemotherapeutic agent daunorubicin (Dau) was attached through an oxime bond either directly or by inserting a GFLG tetrapeptide spacer. The in-vivo toxicity of Dau-GnRH-III derivative conjugates was evaluated on healthy BDF-1 female mice, and their tumour growth inhibitory effect was determined on C26 murine and HT-29 human colon carcinoma-bearing mice. Both oxime bond-containing conjugates were well tolerated and exerted significant antitumour activity on C26 colon carcinoma-bearing mice at a dose of 30 mg Dau content in conjugate/kg body weight. Furthermore, the conjugates inhibited the tumour growth more than the free drug at a dose that was still not toxic. Similar tumour growth inhibitory effects were obtained on HT-29 human colon carcinoma-bearing mice using three treatments with 15 mg Dau content in conjugate/kg. The tumour growth inhibitions according to the tumour volume and the tumour weight were 44/41% and 58/50%, respectively. Considering the results, both of the investigated Dau-GnRH-III derivative conjugates were well tolerated and had significant antitumour effect on colon carcinoma-bearing mice.
Hungary is an important carp producer with intensive trading relationships with farms in other carp-producing areas in Europe. Carp in Europe were recently found infected with carp edema virus (CEV), a poxvirus which causes the koi sleepy disease (KSD) syndrome. Moribund carp were collected from 17 fish farms and angling ponds in different regions of Hungary. Histological analysis of gills from these carp revealed a proliferation of the interlamellar epithelium and an infiltration by eosinophilic cells. In 13 of 17 of these carp, CEV DNA was detected by qPCR and in seven fish more than 1 × 10 copies of virus-specific DNA sequences per 250 ng of DNA, which could be considered as clinically relevant and a cause of disease. A phylogenetic analysis of the sequences revealed that all three genogroups of CEV were present in Hungarian common carp with genogroup I being most abundant. These results support the hypothesis of a prolonged presence of CEV in European carp populations and suggest that previous outbreaks of KSD were not recorded or misdiagnosed. Hence, a testing of carp and koi for infection with CEV should be included into disease surveillance programmes to prevent further spreading of this disease.
SummaryCompared to classical chemotherapy, peptide-based drug targeting is a promising therapeutic approach for cancer, which can provide increased selectivity and decreased side effects to anticancer drugs. Among various homing devices, gonadotropin-releasing hormone-III (GnRH-III) peptide represents a suitable targeting moiety, in particular in the treatment of hormone independent tumors that highly express GnRH receptors (e.g. colon carcinoma). We have previously shown that GnRH-III[4Lys(Ac),8Lys(Dau = Aoa)] bioconjugate, in which daunorubicin was attached via oxime linkage to the 8Lys of a GnRH-III derivative, exerted significant in vivo antitumor effect on subcutaneously developed HT-29 colon tumor. In contrast, results of the study reported here indicated that this compound was not active on an orthotopically developed tumor. However, if Lys in position 4 was acylated with butyric acid instead of acetic acid, the resulting bioconjugate GnRH-III[4Lys(Bu),8Lys(Dau = Aoa)] had significant tumor growth inhibitory effect. Furthermore, it prevented tumor neovascularization, without detectable side effects. Nevertheless, the development of metastases could not be inhibited by the bioconjugate; therefore, its application in combination with a metastasis preventive agent might be necessary in order to achieve complete tumor remission. In spite of this result, the treatment with GnRH-III[4Lys(Bu),8Lys(Dau = Aoa)] bioconjugate proved to have significant benefits over the administration of free daunorubicin, which was used at the maximum tolerated dose.
Conjugation of gonadotropin-releasing hormone (GnRH) analogues GnRH-III, MI-1544, and MI-1892 through lysyl side chains and a tetrapeptide spacer, Gly-PheLeu-Gly (X) to a copolymer, poly(N-vinylpyrrolidone-comaleic acid) (P) caused increased antiproliferative activity toward MCF-7 and MDA-MB-231 breast, PC3 and LNCaP prostate, and Ishikawa endometrial cancer cell lines in culture and against tumor development by xenografts of the breast cancer cells in immunodeficient mice. MCF-7 cells treated with P-X-1544 and P-X-1892 displayed characteristic signs of apoptosis, including vacuoles in the cytoplasm, rounding up, apoptotic bodies, bleb formation, and DNA fragmentation. Conjugates, but not free peptides, inhibited cdc25 phosphatase and caused accumulation of Ishikawa and PC3 cells in the G 2 ͞M phase of the cell cycle after 24 h at lower doses and in the G 1 and G 2 phases after 48 h. Since P-X-peptides appear to be internalized, the increased cytotoxicity of the conjugates is attributed to protection of peptides from proteolysis, enhanced interaction of the peptides with the GnRH receptors, and͞or internalization of P-X-peptide receptor complexes so that P can exert toxic effects inside, possibly by inhibiting enzymes involved in the cell cycle. The additional specificity of P-X-peptides compared with free peptides for direct antiproliferative effects on the cancer cells but not for interactions in the pituitary indicates the therapeutic potential of the conjugates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.