In the present manuscript it is demonstrated that BiPO(4) is a better alternative to lanthanide phosphate host for making lanthanide ion-based luminescent materials. Hexagonal and monoclinic forms of BiPO(4) phase were prepared based on the reaction of Bi(3+) and PO(4)(3-) ions in ethylene glycol medium at 100 and 185 °C, respectively. From the differential thermal analysis (DTA) studies it is confirmed that the difference in the nucleation mechanism rather than the phase transition is responsible for the monoclinic phase formation at low temperatures (125 °C). Monoclinic BiPO(4) is quite stable and forms random solid solutions with lanthanide phosphates having both monoclinic (monazite) and tetragonal (xenotime) structures, as confirmed by XRD, FTIR and (31)P solid state nuclear magnetic resonance studies. On excitation corresponding to the (1)S(0)→(3)P(1) transition of Bi(3+) in BiPO(4):Ln samples, energy transfer from host to lanthanide ions takes place. The studies are quite relevant as there is a growing interest all over the world in replacing lanthanide based host used for different applications with easily available, easily purifiable and cheap main group elements (like Sb, Bi etc.) based hosts.
The complexes, [Cu{EC(5)H(3)(R-3)N}](4) (E/R = Se/Me or Te/R; R = H or Me) were isolated by the reaction between CuCl and NaEC(5)H(3)(R-3)N and were characterized by elemental analyses, uv-vis and NMR ((1)H, (13)C) spectroscopy. The crystal structures of [Cu{SeC(5)H(3)(Me-3)N}](4) and [Cu(TeC(5)H(4)N)](4) revealed that the molecules are tetrameric in which each copper atom lies at the vertex of the tetrahedron and each face of the tetrahedron is capped by the bridging pyridylchalcogenolate ligand. Thermal behavior of these complexes was studied by thermogravimetric analysis. Depending on reaction conditions, thermolysis gave both stoichiometric and non-stoichiometric copper chalcogenides, which were characterized by XRD, EDX, SEM, TEM and SAED techniques. These precursors were used for the preparation of nanocrystals and for deposition of thin films of copper chalcogenides by AACVD (Aerosol Assisted Chemical Vapor Deposition).
Reactions of SbCl(3) and BiCl(3) with M'Se-C(5)H(3)(R-3)N (M' = Li or Na; R = H or Me) gave homoleptic selenolate complexes of the general formula [M{Se-C(5)H(3)(R-3)N}(3)] (M = Sb or Bi). The complexes were characterized by elemental analysis, UV-vis and NMR ((1)H, (13)C and (77)Se) spectroscopy. The single crystal X-ray analysis of [M{Se-C(5)H(3)(Me-3)N}(3)].nH(2)O (M/n = Sb/1.5 and Bi/0.5) revealed that the antimony complex adopts a trigonal pyramidal configuration with monodentate selenolate ligands while the bismuth analogue acquires a distorted square pyramidal configuration defined by two chelating and one monodentate selenolate groups. Pyrolysis of [M{Se-C(5)H(3)(Me-3)N}(3)] either in a furnace or in hexadecylamine (HDA) at different temperatures gave a variety of M(2)Se(3) nanostructures. Thin films of metal selenides have also been deposited on glass substrate by aerosol-assisted chemical vapor deposition (AACVD). Both nanostructures and thin films of metal selenides were characterized by UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.