The aim of this work was to evaluate the influence of glycerol and corn oil on physicochemical properties of polysaccharide-based films. The polysaccharides used were galactomannan from Gleditsia triacanthos and chitosan. Fourier-transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis were performed, together with determinations of moisture content, solubility, water vapor permeability and mechanical properties. Structureeproperties relationships were established, relating the two polysaccharides' structures with the way they interact with water, other film's constituents (glycerol and oil) and the resulting properties. The presence of glycerol and corn oil originated a more hydrophilic structure and a decreased affinity of the film matrix to water, respectively, in both polysaccharides. However, the two polysaccharides presented different behaviors in terms of glass transition temperature, water vapor permeability and elongation-at-break that have been related with the particularities of their structure: while for the galactomannan the specific sorption sites for water are the OeH groups, for chitosan those are OeH and/or NH 2 groups. The present work provides insight regarding the physicochemical properties of polysaccharide-based films and established relationships with polymers' structure, showing that the two polysaccharides studied here have adequate properties to be used as packaging materials for specific food applications.
Blends of chitosan (from Cuban lobster) and clay micro/nanoparticles were prepared by dispersion of the clay particles in the film matrix and the films obtained were characterized in terms of water solubility, water vapor, oxygen and carbon dioxide permeability, optical, mechanical and thermal properties using an Instron universal testing machine, differential scanning calorimetry, thermogravimetric analyses and scanning electron microscopy (SEM). The water vapor barrier properties of the films were significantly improved by incorporation of clay in their composition, while the water solubility decreased as the clay concentration increased (for a constant chitosan concentration). The tensile strength of chitosan/clay films increased significantly with increasing chitosan and clay concentrations, while the values of elongation decreased slightly for high values of chitosan concentration. T m increased with the increase of chitosan concentration, but the changes in T m with the addition of clay were not significant. Polynomial models were fitted to the experimental data in order to facilitate future design of chitosan/ clay film systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.