This paper describes an experimental study of the shape of a shock diffracting around a corner made up of two plane walls, for corner angles from 15 to 165° (in 15° steps) and shock Mach numbers from M0 = 1·0 to 4·0. The results are compared with profiles determined from the diffraction theory of Whitham (1957, 1959). The agreement is shown to be good for an incident shock Mach number of 3·0, and fair in other cases. The behaviour is found to follow the trends established by Lighthill (1949) in a linearized theory. Results for the Mach number of the wall shock are also presented. The shock does not degenerate to a sound wave even for large corner angles and low Mach numbers.
The results of an experimental study of the diffraction of shock waves on plane-walled convex corners are given for a Mach number range from 1·0 to 5·0. The behaviour of the disturbances produced in the region perturbed by the corner are discussed. It is shown that the position of the slipstream and tail of the Prandtl-Meyer fan, and the velocities of the contact surface and second shock become independent of corner angle for angles greater than 75°. Comparisons with theoretical predictions of Jones, Martin & Thornhill (1951) and Parks (1952) are included. In most cases fair agreement is obtained.
For weak shock waves and small wedge angles the application of three-shock (von Neumann) theory gives no physically realistic solutions and yet experiments clearly show a pattern of reflection of three shocks meeting at a triple point. This disagreement is referred to as the von Neumann paradox, and the reflection pattern as von Neumann reflection (vNR). Some recent numerical computations have indicated the existence of an expansion wave immediately behind the reflected wave as originally suggested by Guderley over fifty years ago. Furthermore, a recent solution of the inviscid transonic equations has indicated the possible existence of a very small, multi-wave structure immediately behind the three-shock confluence. A special shock tube has been constructed which allows Mach stem lengths to be obtained which are more than an order of magnitude larger than those obtainable in conventional shock tubes. Schlieren photographs do indeed show a structure consisting of an expansion wave followed by a small shock situated behind the confluence point, with some indication of smaller scale structures in some tests. This indicates that some of the earlier models of vNR, in the parameter space tested, are incorrect. The size of the region influenced by this small wave system is about 2% of the Mach stem length and it is therefore not surprising that it has not been detected before in conventional shock tube facilities.
A phenomenological study of the processes occurring when a shock wave interacts with porous polyester and polyether foams has been undertaken. Plane shock waves generated in a shock tube were reflected off a slab of foam mounted against the back wall of the tube. Tests were conducted with an initial shock wave Mach number of 1.4 and a 70 mm thick slab of foam. The reduction in reflected shock wave strength and substantial increase in the back wall pressure over that for rigid wall reflection, found by other workers, were confirmed.Piezoelectric pressure transducers were used to record the pressure before, alongside and behind the foam specimen. Schlieren photographs of the flow were made and showed some features not previously reported. In particular it is shown that there is a flow of gas across the face of the foam at some point of the process. Previous investigations of this interaction process have assumed that the face of the foam is a contact surface.Short duration photographs of the distortion of the foam were taken, enabling the wave propagation in the foam material itself to be studied. It is established that the front of this compaction wave in the foam material moves at considerably lower velocity (∼ 90 m/s) than the gas wave as detected by the pressure transducers (∼ 200 m/s). This result contrasts with the assumption made in previous work that the two-phase medium behaves essentially as a homogeneous substance.A simple physical model based on a zone of compacted material in the foam acting as a high-resistance flow barrier, is proposed to explain the observed phenomena.
The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm x 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections.Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.