We present the results of a systematic, unbiased search for subpulse modulation of 187 pulsars performed with the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands at an observing wavelength of 21 cm. Using new observations and archival WSRT data we have increased the list of pulsars that show the drifting subpulse phenomenon by 42, indicating that at least one in three pulsars exhibits this phenomenon. The real fraction of pulsars that show the drifting phenomenon is likely to be larger than 55%. The majority of the analysed pulsars show subpulse modulation (170), of which the majority were not previously known to show subpulse modulation and 30 show clear systematic drifting. The large number of new drifters we have found allows us, for the first time, to do meaningful statistics on the drifting phenomenon. We find that the drifting phenomenon is correlated with the pulsar age such that drifting is more likely to occur in older pulsars. Pulsars that drift more coherently seem to be older and have a lower modulation index. There is no significant correlation found between P 3 and other pulsar parameters (such as the pulsar age), as has been reported in the past. There is no significant preference of drift direction and the drift direction is not found to be correlated with pulsar parameters. None of the four complexity parameters predicted by different emission models are shown to be inconsistent with the set of modulation indices of our sample of pulsars. Therefore none of the models can be ruled out based on our observations. We also present results on some interesting new individual sources like a pulsar that shows similar subpulse modulation in both the main-and interpulse and six pulsars with opposite drift senses in different components.
Timing observations of 40 mostly young pulsars using the ATNF Parkes radio telescope between 1990 January and 1998 December are reported. In total, 20 previously unreported glitches and ten other glitches were detected in 11 pulsars. These included 12 glitches in PSR J1341−6220, corresponding to a glitch rate of 1.5 glitches per year. We also detected the largest known glitch, in PSR J1614−5047, with ∆ν g /ν ≈ 6.5 × 10 −6 where ν = 1/P is the pulse frequency. Glitch parameters were determined both by extrapolating timing solutions to inter-glitch intervals and by phase-coherent timing fits across the glitch(es). These fits also gave improved positions and dispersion measures for many of the pulsars. Analysis of glitch parameters, both from this work and from previously published results, shows that most glitches have a fractional amplitude ∆ν g /ν of between 10 −8 and 10 −6 . There is no consistent relationship between glitch amplitude and the time since the previous glitch or the time to the following glitch, either for the ensemble or for individual pulsars. As previously recognised, the largest glitch activity is seen in pulsars with ages of order 10 4 years, but for about 30 per cent of such pulsars, no glitches were detected in the 8-year data span. There is some evidence for a new type of timing irregularity in which there is a significant increase in pulse frequency over a few days, accompanied by a decrease in the magnitude of the slowdown rate. Fits of an exponential recovery to post-glitch data show that for most older pulsars, only a small fraction of the glitch decays. In some younger pulsars, a large fraction of the glitch decays, but in others, there is very little decay. Apart from the Crab pulsar, there is no clear dependence of recovery timescale on pulsar age.
The sensitivity of the SKA enables a number of tests of theories of gravity. A Galactic Census of pulsars will discover most of the active pulsars in the Galaxy beamed toward us. In this census will almost certainly be pulsarblack hole binaries as well as pulsars orbiting the super-massive black hole in the Galactic centre. These systems are unique in their capability to probe the ultra-strong field limit of relativistic gravity. These measurements can be used to test the Cosmic Censorship Conjecture and the No-Hair theorem.The large number of millisecond pulsars discovered with the SKA will also provide a dense array of precision clocks on the sky. These clocks will act as the multiple arms of a huge gravitational wave detector, which can be used to detect and measure the stochastic cosmological gravitational wave background that is expected from a number of sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.