Evolutionary quantitative genetics is the study of how complex traits evolve over time. While this field builds on traditional concepts from quantitative genetics widely used by applied breeders and human geneticists (in particular, the inheritance of complex traits), its unique feature is in examining the role of natural selection in changing the population distribution of a complex trait over time. Our review focuses on this role of selection, starting with response under the standard infinitesimal model, in which trait variation is determined by a very large number of loci, each of small effect. We then turn to issues of measuring fitness (and hence natural selection) on both univariate and multivariate traits. We conclude by examining models that treat fitness itself as a complex trait.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.