Background/Aims. Accumulating clinical evidence suggests that Colquhounia root tablet (CRT) has the potential to alleviate diabetic nephropathy (DN); however, the exact mechanism of action remains unclear. Here, we report the effects of CRT administration on apoptosis and autophagy and attempt to elucidate the underlying mechanisms in vivo and in vitro. Methods. Rat models of DN were established using streptozotocin (STZ). The primary metabolic parameters were assessed. The pathological changes of the rat kidney were investigated, and RNA sequencing was performed for each group. Renal tissue apoptosis was detected using the TUNEL assay. In rats and high glucose- (Hg-) induced HK-2 cells, RT-qPCR and western blot were used to analyze the expression of related genes and proteins. Hg medium was used to establish the diabetic kidney environment. The CCK-8 assay and flow cytometry were used to assess cell viability and apoptosis, respectively. Transmission electron microscopy was used to evaluate autophagy in vitro. Results. CRT treatment significantly reduced albuminuria and renal tissue damage in DN rats. Furthermore, CRT administration inhibited apoptosis and promoted autophagy in DN rat kidney tissues. CRT downregulated CD36 expression and activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway in DN rat kidney tissues. CRT intervention inhibited Hg-induced apoptosis and reversed autophagy in HK-2 cells. Moreover, overexpression of CD36 suppressed the beneficial effects of CRT. Conclusions. Our study is the first to report that CRT inhibited apoptosis and promoted autophagy in vivo and in vitro, which was achieved by reducing CD36 expression and activating the AMPK pathway. Therefore, CRT may be an effective drug to treat DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.