This paper presents a three-dimensional elasticity solution for a simply supported, transversely isotropic functionally graded plate subjected to transverse loading, with Young's moduli and the shear modulus varying exponentially through the thickness and Poisson's ratios being constant. The approach makes use of the recently developed displacement functions for inhomogeneous transversely isotropic media. Dependence of stress and displacement fields in the plate on the inhomogeneity ratio, geometry and degree of anisotropy is examined and discussed. The developed three-dimensional solution for transversely isotropic functionally graded plate is validated through comparison with the available three-dimensional solutions for isotropic functionally graded plates, as well as the classical and higher-order plate theories.
In this paper, three-dimensional elastic deformation of isotropic functionally graded plates subjected to point loading is investigated using a combination of analytical and computational means. The analytical approach is based on the displacement functions method, while numerical modeling, which requires high accuracy in the representation of the point loading, uses Galerkin type finite element method. Three different plate geometries are examined for validation purposes, and the difficulties associated with an optimum choice of the element size are discussed. It is shown that by using a posteriori error estimation based on the equivalent stress measure accurate results can be obtained even in the neighborhood of the point loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.